乙酰白藜芦醇(AC-Res):调节基因表达的前沿技术。

IF 3.8 4区 医学 Q2 GENETICS & HEREDITY Current gene therapy Pub Date : 2024-06-10 DOI:10.2174/0115665232291487240603093218
Uttam Prasad Panigrahy, Rahul Subhash Buchade, Sandhya S, Anoop Kumar N, Sachinkumar Dnyaneshwar Gunjal, E Selvakumari, Narendra Kumar Pandey, Ankita Wal
{"title":"乙酰白藜芦醇(AC-Res):调节基因表达的前沿技术。","authors":"Uttam Prasad Panigrahy, Rahul Subhash Buchade, Sandhya S, Anoop Kumar N, Sachinkumar Dnyaneshwar Gunjal, E Selvakumari, Narendra Kumar Pandey, Ankita Wal","doi":"10.2174/0115665232291487240603093218","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acetylresveratrol (AC-Res), to date, is a powerful stilbene phytoalexin generated organically or as a component of a plant's defensive system, is a significant plant phenolic chemical portion and is investigated as a therapy option for a number of disorders. Owing to its inadequate stabilisation and considerable conformation rigidity, the utility of AC-Res as a medication is limited.</p><p><strong>Objective: </strong>The current review article outlined the structure of AC-Res, their methods of activity, and the latest technological progress in the administration of these molecules. It is conceivable to deduce that AC-Res has a variety of consequences for the cellular functions of infected cells.</p><p><strong>Methods: </strong>The literature survey for the present article was gathered from the authentic data published by various peer-reviewed publishers employing Google Scholar and PubMedprioritizing Scopus and Web of Science indexed journals as the search platform focusing on AC-Res pharmacological actions, particularly in the English language.</p><p><strong>Result: </strong>Despite its extensive spectrum of biological and therapeutic applications, AC-Res has become a source of increasing concern. Depending on the researchers, AC-Res possesses radioprotective, cardioprotective, neurological, anti-inflammatory, and anti-microbial potential. It also has anti-cancer and antioxidant properties.</p><p><strong>Conclusion: </strong>To avoid non-specific cytotoxicity, optimization efforts are presently emphasizing the possible usage of AC-Res based on nanocrystals, nanoparticles and dendrimers, and nanocrystals. Finally, while using AC-Res in biology is still a way off, researchers agree that if they continue to explore it, AC-Res and similar parts will be recognized as actual possibilities for a variety of things in the next years.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acetylresveratrol (AC-Res): An Evolving Frontier in Modulating Gene Expression.\",\"authors\":\"Uttam Prasad Panigrahy, Rahul Subhash Buchade, Sandhya S, Anoop Kumar N, Sachinkumar Dnyaneshwar Gunjal, E Selvakumari, Narendra Kumar Pandey, Ankita Wal\",\"doi\":\"10.2174/0115665232291487240603093218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Acetylresveratrol (AC-Res), to date, is a powerful stilbene phytoalexin generated organically or as a component of a plant's defensive system, is a significant plant phenolic chemical portion and is investigated as a therapy option for a number of disorders. Owing to its inadequate stabilisation and considerable conformation rigidity, the utility of AC-Res as a medication is limited.</p><p><strong>Objective: </strong>The current review article outlined the structure of AC-Res, their methods of activity, and the latest technological progress in the administration of these molecules. It is conceivable to deduce that AC-Res has a variety of consequences for the cellular functions of infected cells.</p><p><strong>Methods: </strong>The literature survey for the present article was gathered from the authentic data published by various peer-reviewed publishers employing Google Scholar and PubMedprioritizing Scopus and Web of Science indexed journals as the search platform focusing on AC-Res pharmacological actions, particularly in the English language.</p><p><strong>Result: </strong>Despite its extensive spectrum of biological and therapeutic applications, AC-Res has become a source of increasing concern. Depending on the researchers, AC-Res possesses radioprotective, cardioprotective, neurological, anti-inflammatory, and anti-microbial potential. It also has anti-cancer and antioxidant properties.</p><p><strong>Conclusion: </strong>To avoid non-specific cytotoxicity, optimization efforts are presently emphasizing the possible usage of AC-Res based on nanocrystals, nanoparticles and dendrimers, and nanocrystals. Finally, while using AC-Res in biology is still a way off, researchers agree that if they continue to explore it, AC-Res and similar parts will be recognized as actual possibilities for a variety of things in the next years.</p>\",\"PeriodicalId\":10798,\"journal\":{\"name\":\"Current gene therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115665232291487240603093218\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232291487240603093218","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:乙酰基白藜芦醇(AC-Res)是一种强效的二苯乙烯类植物毒素,可有机生成或作为植物防御系统的组成部分,是一种重要的植物酚类化学成分,被研究用于治疗多种疾病。由于 AC-Res 不够稳定且构象相当僵化,其作为药物的效用受到了限制:本综述文章概述了 AC-Res 的结构、其活性方法以及这些分子在用药方面的最新技术进展。可以推断,AC-Res 对感染细胞的细胞功能有多种影响:本文的文献调查是通过谷歌学者(Google Scholar)和PubMed优先使用Scopus和Web of Science索引期刊作为搜索平台,从各同行评审出版商发表的真实数据中收集的,重点关注AC-Res的药理作用,尤其是英文文献:结果:尽管 AC-Res 在生物和治疗方面应用广泛,但它已成为一个日益令人担忧的问题。根据研究人员的研究,AC-Res 具有放射保护、心脏保护、神经、抗炎和抗微生物的潜力。它还具有抗癌和抗氧化特性:结论:为了避免非特异性细胞毒性,目前的优化工作重点是在纳米晶体、纳米颗粒和树枝状聚合物以及纳米晶体的基础上使用 AC-Res。最后,虽然 AC-Res 在生物学中的应用还遥遥无期,但研究人员一致认为,如果继续探索,AC-Res 和类似部件将在未来几年内被公认为可以实际应用于各种领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acetylresveratrol (AC-Res): An Evolving Frontier in Modulating Gene Expression.

Background: Acetylresveratrol (AC-Res), to date, is a powerful stilbene phytoalexin generated organically or as a component of a plant's defensive system, is a significant plant phenolic chemical portion and is investigated as a therapy option for a number of disorders. Owing to its inadequate stabilisation and considerable conformation rigidity, the utility of AC-Res as a medication is limited.

Objective: The current review article outlined the structure of AC-Res, their methods of activity, and the latest technological progress in the administration of these molecules. It is conceivable to deduce that AC-Res has a variety of consequences for the cellular functions of infected cells.

Methods: The literature survey for the present article was gathered from the authentic data published by various peer-reviewed publishers employing Google Scholar and PubMedprioritizing Scopus and Web of Science indexed journals as the search platform focusing on AC-Res pharmacological actions, particularly in the English language.

Result: Despite its extensive spectrum of biological and therapeutic applications, AC-Res has become a source of increasing concern. Depending on the researchers, AC-Res possesses radioprotective, cardioprotective, neurological, anti-inflammatory, and anti-microbial potential. It also has anti-cancer and antioxidant properties.

Conclusion: To avoid non-specific cytotoxicity, optimization efforts are presently emphasizing the possible usage of AC-Res based on nanocrystals, nanoparticles and dendrimers, and nanocrystals. Finally, while using AC-Res in biology is still a way off, researchers agree that if they continue to explore it, AC-Res and similar parts will be recognized as actual possibilities for a variety of things in the next years.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current gene therapy
Current gene therapy 医学-遗传学
CiteScore
6.70
自引率
2.80%
发文量
46
期刊介绍: Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases. Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.
期刊最新文献
Immune Modulation Strategies in Gene Therapy: Overcoming Immune Barriers and Enhancing Efficacy. Identification of Gene Signatures Associated with COVID-19 across Children, Adolescents, and Adults in the Nasopharynx and Peripheral Blood by Using a Machine Learning Approach. Pan-Cancer Single-Cell Analysis Revealing the Heterogeneity of Cancer-Associated Fibroblasts in Skin Tumors. Target and Gene-Based Therapeutic Strategies against Pancreatic Cancer: Current and Future Prospects. Characteristics of Oxidative Phosphorylation-Related Subtypes and Construction of a Prognostic Signature in Ovarian Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1