{"title":"了解急性酒精如何影响啮齿动物大脑的神经编码","authors":"Christopher C Lapish","doi":"10.1007/7854_2024_479","DOIUrl":null,"url":null,"abstract":"<p><p>Alcohol impacts neural circuitry throughout the brain and has wide-ranging effects on the biophysical properties of neurons in these circuits. Articulating how these wide-ranging effects might eventually result in altered computational properties has the potential to provide a tractable working model of how alcohol alters neural encoding. This chapter reviews what is currently known about how acute alcohol influences neural activity in cortical, hippocampal, and dopaminergic circuits as these have been the primary focus of understanding how alcohol alters neural computation. While other neural systems have been the focus of exhaustive work on this topic, these brain regions are the ones where in vivo neural recordings are available, thus optimally suited to make the link between changes in neural activity and behavior. Rodent models have been key in developing an understanding of how alcohol impacts the function of these circuits, and this chapter therefore focuses on work from mice and rats. While progress has been made, it is critical to understand the challenges and caveats associated with experimental procedures, especially when performed in vivo, which are designed to answer this question and if/how to translate these data to humans. The hypothesis is discussed that alcohol impairs the ability of neural circuits to acquire states of neural activity that are transiently elevated and characterized by increased complexity. It is hypothesized that these changes are distinct from the traditional view of alcohol being a depressant of neural activity in the forebrain.</p>","PeriodicalId":11257,"journal":{"name":"Current topics in behavioral neurosciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding How Acute Alcohol Impacts Neural Encoding in the Rodent Brain.\",\"authors\":\"Christopher C Lapish\",\"doi\":\"10.1007/7854_2024_479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alcohol impacts neural circuitry throughout the brain and has wide-ranging effects on the biophysical properties of neurons in these circuits. Articulating how these wide-ranging effects might eventually result in altered computational properties has the potential to provide a tractable working model of how alcohol alters neural encoding. This chapter reviews what is currently known about how acute alcohol influences neural activity in cortical, hippocampal, and dopaminergic circuits as these have been the primary focus of understanding how alcohol alters neural computation. While other neural systems have been the focus of exhaustive work on this topic, these brain regions are the ones where in vivo neural recordings are available, thus optimally suited to make the link between changes in neural activity and behavior. Rodent models have been key in developing an understanding of how alcohol impacts the function of these circuits, and this chapter therefore focuses on work from mice and rats. While progress has been made, it is critical to understand the challenges and caveats associated with experimental procedures, especially when performed in vivo, which are designed to answer this question and if/how to translate these data to humans. The hypothesis is discussed that alcohol impairs the ability of neural circuits to acquire states of neural activity that are transiently elevated and characterized by increased complexity. It is hypothesized that these changes are distinct from the traditional view of alcohol being a depressant of neural activity in the forebrain.</p>\",\"PeriodicalId\":11257,\"journal\":{\"name\":\"Current topics in behavioral neurosciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in behavioral neurosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7854_2024_479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in behavioral neurosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7854_2024_479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
Understanding How Acute Alcohol Impacts Neural Encoding in the Rodent Brain.
Alcohol impacts neural circuitry throughout the brain and has wide-ranging effects on the biophysical properties of neurons in these circuits. Articulating how these wide-ranging effects might eventually result in altered computational properties has the potential to provide a tractable working model of how alcohol alters neural encoding. This chapter reviews what is currently known about how acute alcohol influences neural activity in cortical, hippocampal, and dopaminergic circuits as these have been the primary focus of understanding how alcohol alters neural computation. While other neural systems have been the focus of exhaustive work on this topic, these brain regions are the ones where in vivo neural recordings are available, thus optimally suited to make the link between changes in neural activity and behavior. Rodent models have been key in developing an understanding of how alcohol impacts the function of these circuits, and this chapter therefore focuses on work from mice and rats. While progress has been made, it is critical to understand the challenges and caveats associated with experimental procedures, especially when performed in vivo, which are designed to answer this question and if/how to translate these data to humans. The hypothesis is discussed that alcohol impairs the ability of neural circuits to acquire states of neural activity that are transiently elevated and characterized by increased complexity. It is hypothesized that these changes are distinct from the traditional view of alcohol being a depressant of neural activity in the forebrain.