Wenjuan Shi , Shuhua Yuan , Guohua Cheng , Huiling Zhang , Ke Jian Liu , Xunming Ji , Libo Du , Zhifeng Qi
{"title":"血脑屏障靶向脂质纳米粒子改善了铁前列素-1对实验性中风模型脑缺血损伤的神经保护作用。","authors":"Wenjuan Shi , Shuhua Yuan , Guohua Cheng , Huiling Zhang , Ke Jian Liu , Xunming Ji , Libo Du , Zhifeng Qi","doi":"10.1016/j.expneurol.2024.114849","DOIUrl":null,"url":null,"abstract":"<div><p>Cerebral ischemic stroke is a serious disease with high mortality and disability rates. However, few neuroprotective drugs have been used for ischemic stroke in the clinic. Two main reasons may be responsible for this failure: difficulty in penetrating the blood-brain barrier (BBB) and easily inactivated in the blood circulation. Ferroptosis, a lipid oxidation-related cell death, plays significant roles in cerebral ischemia-reperfusion injury. We utilized RVG29, a peptide derived from Rabies virus glycoprotein, to obtain BBB-targeted lipid nanoparticles (T-LNPs) in order to investigate whether T-LNPs improved the neuroprotective effects of Ferrostatin-1 (Fer1, an inhibitor of ferroptosis) against cerebral ischemic damage. T-LNPs significantly increased BBB penetration following oxygen/glucose deprivation exposure in an in vitro BBB model and enhanced the fluorescence distribution in brain tissues at 6 h post-administration in a cerebral ischemic murine model. Moreover, T-LNPs encapsulated Fer1 (T-LNPs-Fer1) significantly enhanced the inhibitory effects of Fer1 on ferroptosis by maintaining the homeostasis of NADPH oxidase 4 (NOX4) and glutathione peroxidase 4 (GPX4) signals in neuronal cells after cerebral ischemia. T-LNPs-Fer1 significantly suppressed oxidative stress [heme oxygenase-1 expression and malondialdehyde (the product of lipid ROS reaction)] in neurons and alleviated ischemia-induced neuronal cell death, compared to Fer1 alone without encapsulation. Furthermore, T-LNPs-Fer1 significantly reduced cerebral infarction and improved behavior functions compared to Fer1-treated cerebral ischemic mice after 45-min ischemia/24-h reperfusion. These findings showed that the T-LNPs helped Fer1 penetrate the BBB and improved the neuroprotection of Fer1 against cerebral ischemic damage in experimental stroke, providing a feasible translational strategy for the development of clinical drugs for the treatment of ischemic stroke.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blood brain barrier-targeted lipid nanoparticles improved the neuroprotection of Ferrostatin-1 against cerebral ischemic damage in an experimental stroke model\",\"authors\":\"Wenjuan Shi , Shuhua Yuan , Guohua Cheng , Huiling Zhang , Ke Jian Liu , Xunming Ji , Libo Du , Zhifeng Qi\",\"doi\":\"10.1016/j.expneurol.2024.114849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cerebral ischemic stroke is a serious disease with high mortality and disability rates. However, few neuroprotective drugs have been used for ischemic stroke in the clinic. Two main reasons may be responsible for this failure: difficulty in penetrating the blood-brain barrier (BBB) and easily inactivated in the blood circulation. Ferroptosis, a lipid oxidation-related cell death, plays significant roles in cerebral ischemia-reperfusion injury. We utilized RVG29, a peptide derived from Rabies virus glycoprotein, to obtain BBB-targeted lipid nanoparticles (T-LNPs) in order to investigate whether T-LNPs improved the neuroprotective effects of Ferrostatin-1 (Fer1, an inhibitor of ferroptosis) against cerebral ischemic damage. T-LNPs significantly increased BBB penetration following oxygen/glucose deprivation exposure in an in vitro BBB model and enhanced the fluorescence distribution in brain tissues at 6 h post-administration in a cerebral ischemic murine model. Moreover, T-LNPs encapsulated Fer1 (T-LNPs-Fer1) significantly enhanced the inhibitory effects of Fer1 on ferroptosis by maintaining the homeostasis of NADPH oxidase 4 (NOX4) and glutathione peroxidase 4 (GPX4) signals in neuronal cells after cerebral ischemia. T-LNPs-Fer1 significantly suppressed oxidative stress [heme oxygenase-1 expression and malondialdehyde (the product of lipid ROS reaction)] in neurons and alleviated ischemia-induced neuronal cell death, compared to Fer1 alone without encapsulation. Furthermore, T-LNPs-Fer1 significantly reduced cerebral infarction and improved behavior functions compared to Fer1-treated cerebral ischemic mice after 45-min ischemia/24-h reperfusion. These findings showed that the T-LNPs helped Fer1 penetrate the BBB and improved the neuroprotection of Fer1 against cerebral ischemic damage in experimental stroke, providing a feasible translational strategy for the development of clinical drugs for the treatment of ischemic stroke.</p></div>\",\"PeriodicalId\":12246,\"journal\":{\"name\":\"Experimental Neurology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014488624001754\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488624001754","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Blood brain barrier-targeted lipid nanoparticles improved the neuroprotection of Ferrostatin-1 against cerebral ischemic damage in an experimental stroke model
Cerebral ischemic stroke is a serious disease with high mortality and disability rates. However, few neuroprotective drugs have been used for ischemic stroke in the clinic. Two main reasons may be responsible for this failure: difficulty in penetrating the blood-brain barrier (BBB) and easily inactivated in the blood circulation. Ferroptosis, a lipid oxidation-related cell death, plays significant roles in cerebral ischemia-reperfusion injury. We utilized RVG29, a peptide derived from Rabies virus glycoprotein, to obtain BBB-targeted lipid nanoparticles (T-LNPs) in order to investigate whether T-LNPs improved the neuroprotective effects of Ferrostatin-1 (Fer1, an inhibitor of ferroptosis) against cerebral ischemic damage. T-LNPs significantly increased BBB penetration following oxygen/glucose deprivation exposure in an in vitro BBB model and enhanced the fluorescence distribution in brain tissues at 6 h post-administration in a cerebral ischemic murine model. Moreover, T-LNPs encapsulated Fer1 (T-LNPs-Fer1) significantly enhanced the inhibitory effects of Fer1 on ferroptosis by maintaining the homeostasis of NADPH oxidase 4 (NOX4) and glutathione peroxidase 4 (GPX4) signals in neuronal cells after cerebral ischemia. T-LNPs-Fer1 significantly suppressed oxidative stress [heme oxygenase-1 expression and malondialdehyde (the product of lipid ROS reaction)] in neurons and alleviated ischemia-induced neuronal cell death, compared to Fer1 alone without encapsulation. Furthermore, T-LNPs-Fer1 significantly reduced cerebral infarction and improved behavior functions compared to Fer1-treated cerebral ischemic mice after 45-min ischemia/24-h reperfusion. These findings showed that the T-LNPs helped Fer1 penetrate the BBB and improved the neuroprotection of Fer1 against cerebral ischemic damage in experimental stroke, providing a feasible translational strategy for the development of clinical drugs for the treatment of ischemic stroke.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.