Hongjie Xu, He Wang, Xiaoping Ning, Zhiyun Xu, Guanxin Zhang
{"title":"综合生物信息学和验证揭示了 PTGS2 及其相关分子可缓解 TNF-α 诱导的内皮衰老。","authors":"Hongjie Xu, He Wang, Xiaoping Ning, Zhiyun Xu, Guanxin Zhang","doi":"10.1007/s11626-024-00931-1","DOIUrl":null,"url":null,"abstract":"<p><p>Accumulative evidences have indicated the interaction between cellular senescence and ferroptosis. This study intends to investigate the ferroptosis-related molecular markers in TNF-α-induced endothelial senescence. The microarray expression dataset (GSE195517) was used to identify the differently expressed ferroptosis-related genes (DEFRGs) through weighted gene co-expressed network analysis (WGCNA). GO and KEGG were performed to explore the biological function. Furthermore, hub genes were identified after protein-protein interaction (PPI) analysis and validated through real-time qPCR (RT-qPCR). Then, a drug-gene network was established to predict potential drugs for the hub genes. Seven DEFRGs were recognized in the TNF-α-induced HUVEC senescence. Moreover, four hub genes (PTGS2, TNFAIP3, CXCL2, and IL6 are upregulated) were identified by PPI analysis and validated by RT-qPCR. Further analysis exhibited that PTGS2 was subcellularly located in the plasma membrane. Furthermore, after aminosalicylic acid (ASA) was identified as ferroptosis inhibitor for targeting PTGS2 in senescent HUVECs, 5-ASA and 4-ASA were verified to alleviate TNF-α-induced HUVEC senescence through ferroptosis. PTGS2 might play a role in TNF-α-induced HUVEC senescence and ASA may be the potential drug for alleviating TNF-α-induced HUVEC senescence through ferroptosis.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"888-902"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated bioinformatics and validation reveal PTGS2 and its related molecules to alleviate TNF-α-induced endothelial senescence.\",\"authors\":\"Hongjie Xu, He Wang, Xiaoping Ning, Zhiyun Xu, Guanxin Zhang\",\"doi\":\"10.1007/s11626-024-00931-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accumulative evidences have indicated the interaction between cellular senescence and ferroptosis. This study intends to investigate the ferroptosis-related molecular markers in TNF-α-induced endothelial senescence. The microarray expression dataset (GSE195517) was used to identify the differently expressed ferroptosis-related genes (DEFRGs) through weighted gene co-expressed network analysis (WGCNA). GO and KEGG were performed to explore the biological function. Furthermore, hub genes were identified after protein-protein interaction (PPI) analysis and validated through real-time qPCR (RT-qPCR). Then, a drug-gene network was established to predict potential drugs for the hub genes. Seven DEFRGs were recognized in the TNF-α-induced HUVEC senescence. Moreover, four hub genes (PTGS2, TNFAIP3, CXCL2, and IL6 are upregulated) were identified by PPI analysis and validated by RT-qPCR. Further analysis exhibited that PTGS2 was subcellularly located in the plasma membrane. Furthermore, after aminosalicylic acid (ASA) was identified as ferroptosis inhibitor for targeting PTGS2 in senescent HUVECs, 5-ASA and 4-ASA were verified to alleviate TNF-α-induced HUVEC senescence through ferroptosis. PTGS2 might play a role in TNF-α-induced HUVEC senescence and ASA may be the potential drug for alleviating TNF-α-induced HUVEC senescence through ferroptosis.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"888-902\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-024-00931-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00931-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Integrated bioinformatics and validation reveal PTGS2 and its related molecules to alleviate TNF-α-induced endothelial senescence.
Accumulative evidences have indicated the interaction between cellular senescence and ferroptosis. This study intends to investigate the ferroptosis-related molecular markers in TNF-α-induced endothelial senescence. The microarray expression dataset (GSE195517) was used to identify the differently expressed ferroptosis-related genes (DEFRGs) through weighted gene co-expressed network analysis (WGCNA). GO and KEGG were performed to explore the biological function. Furthermore, hub genes were identified after protein-protein interaction (PPI) analysis and validated through real-time qPCR (RT-qPCR). Then, a drug-gene network was established to predict potential drugs for the hub genes. Seven DEFRGs were recognized in the TNF-α-induced HUVEC senescence. Moreover, four hub genes (PTGS2, TNFAIP3, CXCL2, and IL6 are upregulated) were identified by PPI analysis and validated by RT-qPCR. Further analysis exhibited that PTGS2 was subcellularly located in the plasma membrane. Furthermore, after aminosalicylic acid (ASA) was identified as ferroptosis inhibitor for targeting PTGS2 in senescent HUVECs, 5-ASA and 4-ASA were verified to alleviate TNF-α-induced HUVEC senescence through ferroptosis. PTGS2 might play a role in TNF-α-induced HUVEC senescence and ASA may be the potential drug for alleviating TNF-α-induced HUVEC senescence through ferroptosis.
期刊介绍:
In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include:
Biotechnology;
Cell and Tissue Models;
Cell Growth/Differentiation/Apoptosis;
Cellular Pathology/Virology;
Cytokines/Growth Factors/Adhesion Factors;
Establishment of Cell Lines;
Signal Transduction;
Stem Cells;
Toxicology/Chemical Carcinogenesis;
Product Applications.