{"title":"消费者的财务困境:利用可解释的机器学习进行预测和开药方","authors":"Hendrik de Waal, Serge Nyawa, Samuel Fosso Wamba","doi":"10.1007/s10796-024-10501-1","DOIUrl":null,"url":null,"abstract":"<p>This paper shows how transactional bank account data can be used to predict and to prevent financial distress in consumers. Machine learning methods were used to identify the most significant transactional behaviours that cause financial distress. We show that Random Forest outperforms the other machine learning models when predicting the financial distress of a consumer. We obtain that Fees and Interest paid stand out as primary contributors of financial distress, emphasizing the significance of financial charges and interest payments in gauging individuals’ financial vulnerability. Using Local Interpretable Model-agnostic Explanations, we study the marginal effect of transactional behaviours on the probability of being in financial distress and assess how different variables selected across all the data point selection sets influence each case. We also propose prescriptions that can be communicated to the client to help the individual improve their financial wellbeing. This research used data from a major South African bank.</p>","PeriodicalId":13610,"journal":{"name":"Information Systems Frontiers","volume":"53 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consumers’ Financial Distress: Prediction and Prescription Using Interpretable Machine Learning\",\"authors\":\"Hendrik de Waal, Serge Nyawa, Samuel Fosso Wamba\",\"doi\":\"10.1007/s10796-024-10501-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper shows how transactional bank account data can be used to predict and to prevent financial distress in consumers. Machine learning methods were used to identify the most significant transactional behaviours that cause financial distress. We show that Random Forest outperforms the other machine learning models when predicting the financial distress of a consumer. We obtain that Fees and Interest paid stand out as primary contributors of financial distress, emphasizing the significance of financial charges and interest payments in gauging individuals’ financial vulnerability. Using Local Interpretable Model-agnostic Explanations, we study the marginal effect of transactional behaviours on the probability of being in financial distress and assess how different variables selected across all the data point selection sets influence each case. We also propose prescriptions that can be communicated to the client to help the individual improve their financial wellbeing. This research used data from a major South African bank.</p>\",\"PeriodicalId\":13610,\"journal\":{\"name\":\"Information Systems Frontiers\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems Frontiers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10796-024-10501-1\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems Frontiers","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10796-024-10501-1","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Consumers’ Financial Distress: Prediction and Prescription Using Interpretable Machine Learning
This paper shows how transactional bank account data can be used to predict and to prevent financial distress in consumers. Machine learning methods were used to identify the most significant transactional behaviours that cause financial distress. We show that Random Forest outperforms the other machine learning models when predicting the financial distress of a consumer. We obtain that Fees and Interest paid stand out as primary contributors of financial distress, emphasizing the significance of financial charges and interest payments in gauging individuals’ financial vulnerability. Using Local Interpretable Model-agnostic Explanations, we study the marginal effect of transactional behaviours on the probability of being in financial distress and assess how different variables selected across all the data point selection sets influence each case. We also propose prescriptions that can be communicated to the client to help the individual improve their financial wellbeing. This research used data from a major South African bank.
期刊介绍:
The interdisciplinary interfaces of Information Systems (IS) are fast emerging as defining areas of research and development in IS. These developments are largely due to the transformation of Information Technology (IT) towards networked worlds and its effects on global communications and economies. While these developments are shaping the way information is used in all forms of human enterprise, they are also setting the tone and pace of information systems of the future. The major advances in IT such as client/server systems, the Internet and the desktop/multimedia computing revolution, for example, have led to numerous important vistas of research and development with considerable practical impact and academic significance. While the industry seeks to develop high performance IS/IT solutions to a variety of contemporary information support needs, academia looks to extend the reach of IS technology into new application domains. Information Systems Frontiers (ISF) aims to provide a common forum of dissemination of frontline industrial developments of substantial academic value and pioneering academic research of significant practical impact.