氧化铝支撑的单铂原子吸附和氧化 CO 时形成的稳定物种的鉴定:纳米粒子为何更活跃

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-06-11 DOI:10.1021/acscatal.4c02184
Franck Morfin, Caroline Dessal, Alexis Sangnier, Céline Chizallet* and Laurent Piccolo*, 
{"title":"氧化铝支撑的单铂原子吸附和氧化 CO 时形成的稳定物种的鉴定:纳米粒子为何更活跃","authors":"Franck Morfin,&nbsp;Caroline Dessal,&nbsp;Alexis Sangnier,&nbsp;Céline Chizallet* and Laurent Piccolo*,&nbsp;","doi":"10.1021/acscatal.4c02184","DOIUrl":null,"url":null,"abstract":"<p >Single-atom catalysis is attractive in the context of sustainable chemistry, but single-atom catalysts (SACs) are not always more active than corresponding clusters or nanoparticles. This is the case, <i>inter alia</i>, of CO oxidation on Pt/γ-Al<sub>2</sub>O<sub>3</sub>, an archetypal catalytic system where SACs are poorly active. In the present work, combining diffuse reflectance infrared spectroscopy experiments and density functional theory calculations, we identify the stable species formed on a Pt/γ-Al<sub>2</sub>O<sub>3</sub> SAC compared to its nanocatalyst counterpart. Formates predominantly occupy the alumina support sites, while oxidized Pt<sub>1</sub> species can stabilize carbonyl, carbonate, and bicarbonate species, depending on the temperature regime. Coadsorption of carbonyl and carbonate moieties on the same platinum atom is found likely, based on both experimental and thermodynamic arguments. Unlike the mild adsorption of CO on Pt clusters, allowing for efficient CO oxidation, carbonyl and carbonate species exhibit high stability on the single Pt atoms, which can explain the low activity of the SAC.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Stable Species Formed Under CO Adsorption and Oxidation on Alumina-Supported Single Pt Atoms: Why Nanoparticles Are More Active\",\"authors\":\"Franck Morfin,&nbsp;Caroline Dessal,&nbsp;Alexis Sangnier,&nbsp;Céline Chizallet* and Laurent Piccolo*,&nbsp;\",\"doi\":\"10.1021/acscatal.4c02184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Single-atom catalysis is attractive in the context of sustainable chemistry, but single-atom catalysts (SACs) are not always more active than corresponding clusters or nanoparticles. This is the case, <i>inter alia</i>, of CO oxidation on Pt/γ-Al<sub>2</sub>O<sub>3</sub>, an archetypal catalytic system where SACs are poorly active. In the present work, combining diffuse reflectance infrared spectroscopy experiments and density functional theory calculations, we identify the stable species formed on a Pt/γ-Al<sub>2</sub>O<sub>3</sub> SAC compared to its nanocatalyst counterpart. Formates predominantly occupy the alumina support sites, while oxidized Pt<sub>1</sub> species can stabilize carbonyl, carbonate, and bicarbonate species, depending on the temperature regime. Coadsorption of carbonyl and carbonate moieties on the same platinum atom is found likely, based on both experimental and thermodynamic arguments. Unlike the mild adsorption of CO on Pt clusters, allowing for efficient CO oxidation, carbonyl and carbonate species exhibit high stability on the single Pt atoms, which can explain the low activity of the SAC.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.4c02184\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c02184","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

单原子催化在可持续化学方面很有吸引力,但单原子催化剂(SAC)并不总是比相应的团簇或纳米颗粒更活跃。Pt/γ-Al2O3上的一氧化碳氧化就是这种情况,这是一种典型的催化体系,单原子催化剂的活性很低。在本研究中,我们结合漫反射红外光谱实验和密度泛函理论计算,确定了 Pt/γ-Al2O3 SAC 与其纳米催化剂相比所形成的稳定物种。甲酸盐主要占据氧化铝支撑位点,而氧化的 Pt1 物种可以稳定羰基、碳酸盐和碳酸氢盐物种,具体取决于温度机制。根据实验和热力学的论证,羰基和碳酸根有可能吸附在同一个铂原子上。与一氧化碳在铂簇上的温和吸附性不同,羰基和碳酸盐物种在单个铂原子上表现出很高的稳定性,这也是 SAC 活性低的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of Stable Species Formed Under CO Adsorption and Oxidation on Alumina-Supported Single Pt Atoms: Why Nanoparticles Are More Active

Single-atom catalysis is attractive in the context of sustainable chemistry, but single-atom catalysts (SACs) are not always more active than corresponding clusters or nanoparticles. This is the case, inter alia, of CO oxidation on Pt/γ-Al2O3, an archetypal catalytic system where SACs are poorly active. In the present work, combining diffuse reflectance infrared spectroscopy experiments and density functional theory calculations, we identify the stable species formed on a Pt/γ-Al2O3 SAC compared to its nanocatalyst counterpart. Formates predominantly occupy the alumina support sites, while oxidized Pt1 species can stabilize carbonyl, carbonate, and bicarbonate species, depending on the temperature regime. Coadsorption of carbonyl and carbonate moieties on the same platinum atom is found likely, based on both experimental and thermodynamic arguments. Unlike the mild adsorption of CO on Pt clusters, allowing for efficient CO oxidation, carbonyl and carbonate species exhibit high stability on the single Pt atoms, which can explain the low activity of the SAC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Investigation of Ethane Dehydrogenation and Hydrogenolysis on Pt(111), Pt(211), and Pt(100): Bayesian Quantification and Correction of DFT-Based Enthalpic and Entropic Uncertainties Site-Selective Pyridine Carbamoylation Enabled by Consecutive Photoinduced Electron Transfer Asymmetric Hydrogenation of Naphthalenes with Molybdenum Catalysts: Ligand Design Improves Chemoselectivity A Highly Stereoselective and Efficient Biocatalytic Synthesis of Chiral Syn-Aryl β-Hydroxy α-Amino Esters Dynamic Activation of Single-Atom Catalysts by Reaction Intermediates: Conversion of Formic Acid on Rh/Fe3O4(001)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1