Clelia Di Salvo, Vanessa D'Antongiovanni, Laura Benvenuti, Matteo Fornai, Giulia Valdiserra, Gianfranco Natale, Larisa Ryskalin, Elena Lucarini, Lorenzo Di Cesare Mannelli, Carla Ghelardini, Rocchina Colucci, György Haskó, Carolina Pellegrini, Luca Antonioli
{"title":"药物阻断 P2X4 受体是控制大鼠结肠炎模型内脏疼痛的可行方法。","authors":"Clelia Di Salvo, Vanessa D'Antongiovanni, Laura Benvenuti, Matteo Fornai, Giulia Valdiserra, Gianfranco Natale, Larisa Ryskalin, Elena Lucarini, Lorenzo Di Cesare Mannelli, Carla Ghelardini, Rocchina Colucci, György Haskó, Carolina Pellegrini, Luca Antonioli","doi":"10.1080/1061186X.2024.2367563","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays, the pharmacological management of visceral hypersensitivity associated with colitis is ineffective. In this context, targeting purinergic P2X4 receptor (P2X4R), which can modulate visceral pain transmission, could represent a promising therapeutic strategy. Herein, we tested the pain-relieving effect of two novel and selective P2X4R antagonists (NC-2600 and NP-1815-PX) in a murine model of DNBS-induced colitis and investigated the mechanisms underlying their effect. Tested drugs and dexamethasone (DEX) were administered orally, two days after colitis induction. Treatment with tested drugs and DEX improved tissue inflammatory parameters (body weight, spleen weight, macroscopic damage, TNF and IL-1β levels) in DNBS-rats. In addition, NC-2600 and NP-1815-PX attenuated visceral pain better than DEX and prevented the reduction of occludin expression. In <i>in vitro</i> studies, treatment of CaCo2 cells with supernatant from THP-1 cells, previously treated with LPS plus ATP, reduced the expression of tight junctions protein. By contrast, CaCo2 cells treated with supernatant from THP-1 cells, previously incubated with tested drugs, counteracted the reduction of tight junctions due to the inhibition of P2X4R/NLRP3/IL-1β axis. In conclusion, these results suggest that the direct and selective inhibition of P2X4R represents a viable approach for the management of visceral pain associated with colitis <i>via</i> NLRP3/IL-1β axis inhibition.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"953-963"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The pharmacological blockade of P2X4 receptor as a viable approach to manage visceral pain in a rat model of colitis.\",\"authors\":\"Clelia Di Salvo, Vanessa D'Antongiovanni, Laura Benvenuti, Matteo Fornai, Giulia Valdiserra, Gianfranco Natale, Larisa Ryskalin, Elena Lucarini, Lorenzo Di Cesare Mannelli, Carla Ghelardini, Rocchina Colucci, György Haskó, Carolina Pellegrini, Luca Antonioli\",\"doi\":\"10.1080/1061186X.2024.2367563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nowadays, the pharmacological management of visceral hypersensitivity associated with colitis is ineffective. In this context, targeting purinergic P2X4 receptor (P2X4R), which can modulate visceral pain transmission, could represent a promising therapeutic strategy. Herein, we tested the pain-relieving effect of two novel and selective P2X4R antagonists (NC-2600 and NP-1815-PX) in a murine model of DNBS-induced colitis and investigated the mechanisms underlying their effect. Tested drugs and dexamethasone (DEX) were administered orally, two days after colitis induction. Treatment with tested drugs and DEX improved tissue inflammatory parameters (body weight, spleen weight, macroscopic damage, TNF and IL-1β levels) in DNBS-rats. In addition, NC-2600 and NP-1815-PX attenuated visceral pain better than DEX and prevented the reduction of occludin expression. In <i>in vitro</i> studies, treatment of CaCo2 cells with supernatant from THP-1 cells, previously treated with LPS plus ATP, reduced the expression of tight junctions protein. By contrast, CaCo2 cells treated with supernatant from THP-1 cells, previously incubated with tested drugs, counteracted the reduction of tight junctions due to the inhibition of P2X4R/NLRP3/IL-1β axis. In conclusion, these results suggest that the direct and selective inhibition of P2X4R represents a viable approach for the management of visceral pain associated with colitis <i>via</i> NLRP3/IL-1β axis inhibition.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":\" \",\"pages\":\"953-963\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2024.2367563\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2024.2367563","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The pharmacological blockade of P2X4 receptor as a viable approach to manage visceral pain in a rat model of colitis.
Nowadays, the pharmacological management of visceral hypersensitivity associated with colitis is ineffective. In this context, targeting purinergic P2X4 receptor (P2X4R), which can modulate visceral pain transmission, could represent a promising therapeutic strategy. Herein, we tested the pain-relieving effect of two novel and selective P2X4R antagonists (NC-2600 and NP-1815-PX) in a murine model of DNBS-induced colitis and investigated the mechanisms underlying their effect. Tested drugs and dexamethasone (DEX) were administered orally, two days after colitis induction. Treatment with tested drugs and DEX improved tissue inflammatory parameters (body weight, spleen weight, macroscopic damage, TNF and IL-1β levels) in DNBS-rats. In addition, NC-2600 and NP-1815-PX attenuated visceral pain better than DEX and prevented the reduction of occludin expression. In in vitro studies, treatment of CaCo2 cells with supernatant from THP-1 cells, previously treated with LPS plus ATP, reduced the expression of tight junctions protein. By contrast, CaCo2 cells treated with supernatant from THP-1 cells, previously incubated with tested drugs, counteracted the reduction of tight junctions due to the inhibition of P2X4R/NLRP3/IL-1β axis. In conclusion, these results suggest that the direct and selective inhibition of P2X4R represents a viable approach for the management of visceral pain associated with colitis via NLRP3/IL-1β axis inhibition.
期刊介绍:
Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs.
Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.