额叶阿尔法不对称与反应性抑制控制的行为和大脑活动指数之间的关系。

IF 2.1 3区 医学 Q3 NEUROSCIENCES Journal of neurophysiology Pub Date : 2024-08-01 Epub Date: 2024-06-12 DOI:10.1152/jn.00046.2024
Atakan M Akil, Renáta Cserjési, Tamás Nagy, Zsolt Demetrovics, Dezső Németh, H N Alexander Logemann
{"title":"额叶阿尔法不对称与反应性抑制控制的行为和大脑活动指数之间的关系。","authors":"Atakan M Akil, Renáta Cserjési, Tamás Nagy, Zsolt Demetrovics, Dezső Németh, H N Alexander Logemann","doi":"10.1152/jn.00046.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive inhibitory control plays an important role in phenotype of different diseases/different phases of a disease. One candidate electrophysiological marker of inhibitory control is frontal alpha asymmetry (FAA). FAA reflects the relative difference in contralateral frontal brain activity. However, the relationship between FAA and potential behavioral/brain activity indices of reactive inhibitory control is not yet clear. We assessed the relationship between resting-state FAA and indicators of reactive inhibitory control. Additionally, we investigated the effect of modulation of FAA via transcranial direct current stimulation (tDCS). We implemented a randomized sham-controlled design with 65 healthy humans (M<sub>age</sub> = 23.93, SD<sub>age</sub> = 6.08; 46 female). Before and after 2-mA anodal tDCS of the right frontal site (with the cathode at the contralateral site) for 20 min, we collected EEG data and reactive inhibitory performance in neutral and food-reward conditions, using the stop signal task (SST). There was no support for the effect of tDCS on FAA or any indices of reactive inhibitory control. Our correlation analysis revealed an association between inhibitory brain activity in the food-reward condition and (pre-tDCS) asymmetry. Higher right relative to left frontal brain activity was correlated with reduced early-onset inhibitory activity and, in contrast, linked with higher late-onset inhibitory control in the food-reward condition. Similarly, event-related potential analyses showed reduced early-onset and enhanced late-onset inhibitory brain activity over time, particularly in the food-reward condition. These results suggest that there can be a dissociation regarding the lateralization of frontal brain activity and early- and late-onset inhibitory brain activity.<b>NEW & NOTEWORTHY</b> This research reveals dissociation between baseline frontal alpha asymmetry and the timing of reactive inhibitory brain activities in food-reward contexts. Whereas inhibitory control performance decreases over time in a stop signal task, electrophysiological indices show reduced early- and heightened late-onset inhibitory brain activity, especially in the reward condition. Additionally, greater right frontal activity correlates with reduced early-onset and increased late-onset inhibitory brain activity.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302602/pdf/","citationCount":"0","resultStr":"{\"title\":\"The relationship between frontal alpha asymmetry and behavioral and brain activity indices of reactive inhibitory control.\",\"authors\":\"Atakan M Akil, Renáta Cserjési, Tamás Nagy, Zsolt Demetrovics, Dezső Németh, H N Alexander Logemann\",\"doi\":\"10.1152/jn.00046.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reactive inhibitory control plays an important role in phenotype of different diseases/different phases of a disease. One candidate electrophysiological marker of inhibitory control is frontal alpha asymmetry (FAA). FAA reflects the relative difference in contralateral frontal brain activity. However, the relationship between FAA and potential behavioral/brain activity indices of reactive inhibitory control is not yet clear. We assessed the relationship between resting-state FAA and indicators of reactive inhibitory control. Additionally, we investigated the effect of modulation of FAA via transcranial direct current stimulation (tDCS). We implemented a randomized sham-controlled design with 65 healthy humans (M<sub>age</sub> = 23.93, SD<sub>age</sub> = 6.08; 46 female). Before and after 2-mA anodal tDCS of the right frontal site (with the cathode at the contralateral site) for 20 min, we collected EEG data and reactive inhibitory performance in neutral and food-reward conditions, using the stop signal task (SST). There was no support for the effect of tDCS on FAA or any indices of reactive inhibitory control. Our correlation analysis revealed an association between inhibitory brain activity in the food-reward condition and (pre-tDCS) asymmetry. Higher right relative to left frontal brain activity was correlated with reduced early-onset inhibitory activity and, in contrast, linked with higher late-onset inhibitory control in the food-reward condition. Similarly, event-related potential analyses showed reduced early-onset and enhanced late-onset inhibitory brain activity over time, particularly in the food-reward condition. These results suggest that there can be a dissociation regarding the lateralization of frontal brain activity and early- and late-onset inhibitory brain activity.<b>NEW & NOTEWORTHY</b> This research reveals dissociation between baseline frontal alpha asymmetry and the timing of reactive inhibitory brain activities in food-reward contexts. Whereas inhibitory control performance decreases over time in a stop signal task, electrophysiological indices show reduced early- and heightened late-onset inhibitory brain activity, especially in the reward condition. Additionally, greater right frontal activity correlates with reduced early-onset and increased late-onset inhibitory brain activity.</p>\",\"PeriodicalId\":16563,\"journal\":{\"name\":\"Journal of neurophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302602/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/jn.00046.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00046.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

反应性抑制控制在不同疾病/疾病不同阶段的表型中起着重要作用。抑制控制的一个候选电生理标记是额叶α不对称(FAA)。额叶α不对称反映了对侧额叶大脑活动的相对差异。然而,FAA 与反应性抑制控制的潜在行为/脑活动指标之间的关系尚不清楚。我们评估了静息态 FAA 与反应性抑制控制指标之间的关系。此外,我们还研究了通过经颅直流电刺激(tDCS)调节 FAA 的效果。我们对 65 名健康人(平均年龄 = 23.93 岁;平均年龄 = 6.08 岁;46 名女性)进行了随机假对照设计。在对右侧额叶部位(阴极位于对侧部位)进行 2 mA 阳极 tDCS 刺激 20 分钟前后,我们收集了脑电图数据以及在中性和食物奖赏条件下使用停止信号任务(SST)的反应性抑制表现。tDCS 对 FAA 或任何反应性抑制控制指标的影响均未得到支持。我们的相关分析表明,食物奖赏条件下的大脑抑制活动与(tDCS 前)不对称之间存在关联。相对于左侧额叶,右侧额叶的大脑活动较高,这与早期抑制活动减少有关,相反,这与食物奖赏条件下晚期抑制控制较高有关。同样,事件相关电位分析表明,随着时间的推移,大脑早期抑制活动减少,晚期抑制活动增强,尤其是在食物奖赏条件下。这些结果表明,额叶大脑活动的侧向性与早期和晚期抑制性大脑活动可能存在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The relationship between frontal alpha asymmetry and behavioral and brain activity indices of reactive inhibitory control.

Reactive inhibitory control plays an important role in phenotype of different diseases/different phases of a disease. One candidate electrophysiological marker of inhibitory control is frontal alpha asymmetry (FAA). FAA reflects the relative difference in contralateral frontal brain activity. However, the relationship between FAA and potential behavioral/brain activity indices of reactive inhibitory control is not yet clear. We assessed the relationship between resting-state FAA and indicators of reactive inhibitory control. Additionally, we investigated the effect of modulation of FAA via transcranial direct current stimulation (tDCS). We implemented a randomized sham-controlled design with 65 healthy humans (Mage = 23.93, SDage = 6.08; 46 female). Before and after 2-mA anodal tDCS of the right frontal site (with the cathode at the contralateral site) for 20 min, we collected EEG data and reactive inhibitory performance in neutral and food-reward conditions, using the stop signal task (SST). There was no support for the effect of tDCS on FAA or any indices of reactive inhibitory control. Our correlation analysis revealed an association between inhibitory brain activity in the food-reward condition and (pre-tDCS) asymmetry. Higher right relative to left frontal brain activity was correlated with reduced early-onset inhibitory activity and, in contrast, linked with higher late-onset inhibitory control in the food-reward condition. Similarly, event-related potential analyses showed reduced early-onset and enhanced late-onset inhibitory brain activity over time, particularly in the food-reward condition. These results suggest that there can be a dissociation regarding the lateralization of frontal brain activity and early- and late-onset inhibitory brain activity.NEW & NOTEWORTHY This research reveals dissociation between baseline frontal alpha asymmetry and the timing of reactive inhibitory brain activities in food-reward contexts. Whereas inhibitory control performance decreases over time in a stop signal task, electrophysiological indices show reduced early- and heightened late-onset inhibitory brain activity, especially in the reward condition. Additionally, greater right frontal activity correlates with reduced early-onset and increased late-onset inhibitory brain activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
期刊最新文献
A 5-week centrifuge-based G training with feedback on the magnitude of G force, does not improve the perception of roll tilt during simulated coordinated turns. ALTERED CONTROL OF BREATHING IN A RAT MODEL OF ALLERGIC LOWER AIRWAY INFLAMMATION. Ictal and interictal epileptic networks of 34 patients with Hypothalamic Hamartoma on scalp electroencephalography. Investigating premotor corticospinal excitability in fast and slow voluntary contractions of the elbow flexors. Rat movements reflect internal decision dynamics in an evidence accumulation task.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1