Michael Wang, Tycho Heimbach, Wei Zhu, Di Wu, Kevin G Reuter, Filippos Kesisoglou
{"title":"基于生理学的生物药剂学模型用于吉法匹克红外制剂的开发和生物等效溶出安全空间的定义","authors":"Michael Wang, Tycho Heimbach, Wei Zhu, Di Wu, Kevin G Reuter, Filippos Kesisoglou","doi":"10.1208/s12248-024-00938-2","DOIUrl":null,"url":null,"abstract":"<p><p>Gefapixant is a weakly basic drug which has been formulated as an immediate release tablet for oral administration. A physiologically based biopharmaceutics model (PBBM) was developed based on gefapixant physicochemical properties and clinical pharmacokinetics to aid formulation selection, bioequivalence safe space assessment and dissolution specification settings. In vitro dissolution profiles of different free base and citrate salt formulations were used as an input to the model. The model was validated against the results of independent studies, which included a bioequivalence and a relative bioavailability study, as well as a human ADME study, all meeting acceptance criteria of prediction errors ≤ 20% for both Cmax and AUC. PBBM was also applied to evaluate gastric pH-mediated drug-drug-interaction potential with co-administration of a proton pump inhibitor (PPI), omeprazole. Model results showed good agreement with clinical data in which omeprazole lowered gefapixant exposure for the free base formulation but did not significantly alter gefapixant pharmacokinetics for the citrate based commercial drug product. An extended virtual dissolution bioequivalence safe space was established. Gefapixant drug product batches are anticipated to be bioequivalent with the clinical reference batch when their dissolution is > 80% in 60 minutes. PBBM established a wide dissolution bioequivalence space as part of assuring product quality.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":"26 4","pages":"69"},"PeriodicalIF":5.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physiologically Based Biopharmaceutics Modeling for Gefapixant IR Formulation Development and Defining the Bioequivalence Dissolution Safe Space.\",\"authors\":\"Michael Wang, Tycho Heimbach, Wei Zhu, Di Wu, Kevin G Reuter, Filippos Kesisoglou\",\"doi\":\"10.1208/s12248-024-00938-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gefapixant is a weakly basic drug which has been formulated as an immediate release tablet for oral administration. A physiologically based biopharmaceutics model (PBBM) was developed based on gefapixant physicochemical properties and clinical pharmacokinetics to aid formulation selection, bioequivalence safe space assessment and dissolution specification settings. In vitro dissolution profiles of different free base and citrate salt formulations were used as an input to the model. The model was validated against the results of independent studies, which included a bioequivalence and a relative bioavailability study, as well as a human ADME study, all meeting acceptance criteria of prediction errors ≤ 20% for both Cmax and AUC. PBBM was also applied to evaluate gastric pH-mediated drug-drug-interaction potential with co-administration of a proton pump inhibitor (PPI), omeprazole. Model results showed good agreement with clinical data in which omeprazole lowered gefapixant exposure for the free base formulation but did not significantly alter gefapixant pharmacokinetics for the citrate based commercial drug product. An extended virtual dissolution bioequivalence safe space was established. Gefapixant drug product batches are anticipated to be bioequivalent with the clinical reference batch when their dissolution is > 80% in 60 minutes. PBBM established a wide dissolution bioequivalence space as part of assuring product quality.</p>\",\"PeriodicalId\":50934,\"journal\":{\"name\":\"AAPS Journal\",\"volume\":\"26 4\",\"pages\":\"69\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1208/s12248-024-00938-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-024-00938-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Physiologically Based Biopharmaceutics Modeling for Gefapixant IR Formulation Development and Defining the Bioequivalence Dissolution Safe Space.
Gefapixant is a weakly basic drug which has been formulated as an immediate release tablet for oral administration. A physiologically based biopharmaceutics model (PBBM) was developed based on gefapixant physicochemical properties and clinical pharmacokinetics to aid formulation selection, bioequivalence safe space assessment and dissolution specification settings. In vitro dissolution profiles of different free base and citrate salt formulations were used as an input to the model. The model was validated against the results of independent studies, which included a bioequivalence and a relative bioavailability study, as well as a human ADME study, all meeting acceptance criteria of prediction errors ≤ 20% for both Cmax and AUC. PBBM was also applied to evaluate gastric pH-mediated drug-drug-interaction potential with co-administration of a proton pump inhibitor (PPI), omeprazole. Model results showed good agreement with clinical data in which omeprazole lowered gefapixant exposure for the free base formulation but did not significantly alter gefapixant pharmacokinetics for the citrate based commercial drug product. An extended virtual dissolution bioequivalence safe space was established. Gefapixant drug product batches are anticipated to be bioequivalent with the clinical reference batch when their dissolution is > 80% in 60 minutes. PBBM established a wide dissolution bioequivalence space as part of assuring product quality.
期刊介绍:
The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including:
· Drug Design and Discovery
· Pharmaceutical Biotechnology
· Biopharmaceutics, Formulation, and Drug Delivery
· Metabolism and Transport
· Pharmacokinetics, Pharmacodynamics, and Pharmacometrics
· Translational Research
· Clinical Evaluations and Therapeutic Outcomes
· Regulatory Science
We invite submissions under the following article types:
· Original Research Articles
· Reviews and Mini-reviews
· White Papers, Commentaries, and Editorials
· Meeting Reports
· Brief/Technical Reports and Rapid Communications
· Regulatory Notes
· Tutorials
· Protocols in the Pharmaceutical Sciences
In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.