Guojing Wang, Hongyun Liu, Weidong Wang, Hongyan Kang
{"title":"[处理单通道/少通道脑电信号中生理伪影的方法]。","authors":"Guojing Wang, Hongyun Liu, Weidong Wang, Hongyan Kang","doi":"10.12455/j.issn.1671-7104.230374","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalogram (EEG) is a non-invasive measurement method of brain electrical activity. In recent years, single/few-channel EEG has been used more and more, but various types of physiological artifacts seriously affect the analysis and wide application of single/few-channel EEG. In this paper, the regression and filtering methods, decomposition methods, blind source separation methods and machine learning methods involved in the various physiological artifacts in single/few-channel EEG are reviewed. According to the characteristics of single/few-channel EEG signals, hybrid EEG artifact removal methods for different scenarios are analyzed and summarized, mainly including single-artifact/multi-artifact scenes and online/offline scenes. In addition, the methods and metrics for validating the performance of the algorithm on semi-simulated and real EEG data are also reviewed. Finally, the development trend of single/few-channel EEG application and physiological artifact processing is briefly described.</p>","PeriodicalId":52535,"journal":{"name":"中国医疗器械杂志","volume":"48 3","pages":"298-305"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Methods for Processing Physiological Artifacts in Single/Few-Channel EEG Signals].\",\"authors\":\"Guojing Wang, Hongyun Liu, Weidong Wang, Hongyan Kang\",\"doi\":\"10.12455/j.issn.1671-7104.230374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electroencephalogram (EEG) is a non-invasive measurement method of brain electrical activity. In recent years, single/few-channel EEG has been used more and more, but various types of physiological artifacts seriously affect the analysis and wide application of single/few-channel EEG. In this paper, the regression and filtering methods, decomposition methods, blind source separation methods and machine learning methods involved in the various physiological artifacts in single/few-channel EEG are reviewed. According to the characteristics of single/few-channel EEG signals, hybrid EEG artifact removal methods for different scenarios are analyzed and summarized, mainly including single-artifact/multi-artifact scenes and online/offline scenes. In addition, the methods and metrics for validating the performance of the algorithm on semi-simulated and real EEG data are also reviewed. Finally, the development trend of single/few-channel EEG application and physiological artifact processing is briefly described.</p>\",\"PeriodicalId\":52535,\"journal\":{\"name\":\"中国医疗器械杂志\",\"volume\":\"48 3\",\"pages\":\"298-305\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国医疗器械杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12455/j.issn.1671-7104.230374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国医疗器械杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12455/j.issn.1671-7104.230374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
[Methods for Processing Physiological Artifacts in Single/Few-Channel EEG Signals].
Electroencephalogram (EEG) is a non-invasive measurement method of brain electrical activity. In recent years, single/few-channel EEG has been used more and more, but various types of physiological artifacts seriously affect the analysis and wide application of single/few-channel EEG. In this paper, the regression and filtering methods, decomposition methods, blind source separation methods and machine learning methods involved in the various physiological artifacts in single/few-channel EEG are reviewed. According to the characteristics of single/few-channel EEG signals, hybrid EEG artifact removal methods for different scenarios are analyzed and summarized, mainly including single-artifact/multi-artifact scenes and online/offline scenes. In addition, the methods and metrics for validating the performance of the algorithm on semi-simulated and real EEG data are also reviewed. Finally, the development trend of single/few-channel EEG application and physiological artifact processing is briefly described.
期刊介绍:
Chinese Journal of Medical Instrumentation mainly reports on the development, progress, research and development, production, clinical application, management, and maintenance of medical devices and biomedical engineering. Its aim is to promote the exchange of information on medical devices and biomedical engineering in China and turn the journal into a high-quality academic journal that leads academic directions and advocates academic debates.