[处理单通道/少通道脑电信号中生理伪影的方法]。

Guojing Wang, Hongyun Liu, Weidong Wang, Hongyan Kang
{"title":"[处理单通道/少通道脑电信号中生理伪影的方法]。","authors":"Guojing Wang, Hongyun Liu, Weidong Wang, Hongyan Kang","doi":"10.12455/j.issn.1671-7104.230374","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalogram (EEG) is a non-invasive measurement method of brain electrical activity. In recent years, single/few-channel EEG has been used more and more, but various types of physiological artifacts seriously affect the analysis and wide application of single/few-channel EEG. In this paper, the regression and filtering methods, decomposition methods, blind source separation methods and machine learning methods involved in the various physiological artifacts in single/few-channel EEG are reviewed. According to the characteristics of single/few-channel EEG signals, hybrid EEG artifact removal methods for different scenarios are analyzed and summarized, mainly including single-artifact/multi-artifact scenes and online/offline scenes. In addition, the methods and metrics for validating the performance of the algorithm on semi-simulated and real EEG data are also reviewed. Finally, the development trend of single/few-channel EEG application and physiological artifact processing is briefly described.</p>","PeriodicalId":52535,"journal":{"name":"中国医疗器械杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Methods for Processing Physiological Artifacts in Single/Few-Channel EEG Signals].\",\"authors\":\"Guojing Wang, Hongyun Liu, Weidong Wang, Hongyan Kang\",\"doi\":\"10.12455/j.issn.1671-7104.230374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electroencephalogram (EEG) is a non-invasive measurement method of brain electrical activity. In recent years, single/few-channel EEG has been used more and more, but various types of physiological artifacts seriously affect the analysis and wide application of single/few-channel EEG. In this paper, the regression and filtering methods, decomposition methods, blind source separation methods and machine learning methods involved in the various physiological artifacts in single/few-channel EEG are reviewed. According to the characteristics of single/few-channel EEG signals, hybrid EEG artifact removal methods for different scenarios are analyzed and summarized, mainly including single-artifact/multi-artifact scenes and online/offline scenes. In addition, the methods and metrics for validating the performance of the algorithm on semi-simulated and real EEG data are also reviewed. Finally, the development trend of single/few-channel EEG application and physiological artifact processing is briefly described.</p>\",\"PeriodicalId\":52535,\"journal\":{\"name\":\"中国医疗器械杂志\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国医疗器械杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12455/j.issn.1671-7104.230374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国医疗器械杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12455/j.issn.1671-7104.230374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

脑电图(EEG)是一种无创的脑电活动测量方法。近年来,单/微通道脑电图的应用越来越广泛,但各种生理伪影严重影响了单/微通道脑电图的分析和广泛应用。本文综述了单/微通道脑电图中各种生理伪影所涉及的回归和滤波方法、分解方法、盲源分离方法和机器学习方法。根据单通道/微通道脑电信号的特点,分析总结了不同场景下的混合脑电信号伪影去除方法,主要包括单伪影/多伪影场景和在线/离线场景。此外,还综述了在半模拟和真实脑电图数据上验证算法性能的方法和指标。最后,简要介绍了单通道/少通道脑电图应用和生理伪像处理的发展趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Methods for Processing Physiological Artifacts in Single/Few-Channel EEG Signals].

Electroencephalogram (EEG) is a non-invasive measurement method of brain electrical activity. In recent years, single/few-channel EEG has been used more and more, but various types of physiological artifacts seriously affect the analysis and wide application of single/few-channel EEG. In this paper, the regression and filtering methods, decomposition methods, blind source separation methods and machine learning methods involved in the various physiological artifacts in single/few-channel EEG are reviewed. According to the characteristics of single/few-channel EEG signals, hybrid EEG artifact removal methods for different scenarios are analyzed and summarized, mainly including single-artifact/multi-artifact scenes and online/offline scenes. In addition, the methods and metrics for validating the performance of the algorithm on semi-simulated and real EEG data are also reviewed. Finally, the development trend of single/few-channel EEG application and physiological artifact processing is briefly described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国医疗器械杂志
中国医疗器械杂志 Medicine-Medicine (all)
CiteScore
0.40
自引率
0.00%
发文量
8086
期刊介绍:
期刊最新文献
[12-Lead Holter Integrated with Sleep Monitoring Module]. [Bowel Sounds Detection Method Based on ResNet-BiLSTM and Attention Mechanism]. [Clinical Application of Equivalent Uniform Dose in Intensity-Modulated Rotational Radiotherapy Based on Eclipse TPS]. [Clinical Validation of a Prototype Smart Non-Invasive Pregnancy Glucose Monitor]. [Clinical Validation Study of Deep Learning-Generated Magnetic Resonance Images].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1