{"title":"停止持续肾脏替代疗法的机器学习辅助决策模型。","authors":"Siyi Zhu, Jing Yan, Shijin Gong, Xue Feng, Gangmin Ning, Liang Xu","doi":"10.1159/000539787","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Continuous renal replacement therapy (CRRT) is a primary form of renal support for patients with acute kidney injury in an intensive care unit. Making an accurate decision of discontinuation is crucial for the prognosis of patients. Previous research has mostly focused on the univariate and multivariate analysis of factors in CRRT, without the capacity to capture the complexity of the decision-making process. The present study thus developed a dynamic, interpretable decision model for CRRT discontinuation.</p><p><strong>Method: </strong>The study adopted a cohort of 1,234 adult patients admitted to an intensive care unit in the MIMIC-IV database. We used the eXtreme Gradient Boosting (XGBoost) machine learning algorithm to construct dynamic discontinuation decision models across 4 time points. SHapley Additive exPlanation (SHAP) analysis was conducted to exhibit the contributions of individual features to the model output.</p><p><strong>Result: </strong>Of the 1,234 included patients with CRRT, 596 (48.3%) successfully discontinued CRRT. The dynamic prediction by the XGBoost model produced an area under the curve of 0.848, with accuracy, sensitivity, and specificity of 0.782, 0.786, and 0.776, respectively. The performance of the XGBoost model was far superior to other test models. SHAP demonstrated that the features that contributed most to the model results were the Sequential Organ Failure Assessment score, serum lactate level, and 24-h urine output.</p><p><strong>Conclusion: </strong>Dynamic decision models supported by machine learning are capable of dealing with complex factors in CRRT and effectively predicting the outcome of discontinuation.</p>","PeriodicalId":8953,"journal":{"name":"Blood Purification","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Aided Decision-Making Model for the Discontinuation of Continuous Renal Replacement Therapy.\",\"authors\":\"Siyi Zhu, Jing Yan, Shijin Gong, Xue Feng, Gangmin Ning, Liang Xu\",\"doi\":\"10.1159/000539787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Continuous renal replacement therapy (CRRT) is a primary form of renal support for patients with acute kidney injury in an intensive care unit. Making an accurate decision of discontinuation is crucial for the prognosis of patients. Previous research has mostly focused on the univariate and multivariate analysis of factors in CRRT, without the capacity to capture the complexity of the decision-making process. The present study thus developed a dynamic, interpretable decision model for CRRT discontinuation.</p><p><strong>Method: </strong>The study adopted a cohort of 1,234 adult patients admitted to an intensive care unit in the MIMIC-IV database. We used the eXtreme Gradient Boosting (XGBoost) machine learning algorithm to construct dynamic discontinuation decision models across 4 time points. SHapley Additive exPlanation (SHAP) analysis was conducted to exhibit the contributions of individual features to the model output.</p><p><strong>Result: </strong>Of the 1,234 included patients with CRRT, 596 (48.3%) successfully discontinued CRRT. The dynamic prediction by the XGBoost model produced an area under the curve of 0.848, with accuracy, sensitivity, and specificity of 0.782, 0.786, and 0.776, respectively. The performance of the XGBoost model was far superior to other test models. SHAP demonstrated that the features that contributed most to the model results were the Sequential Organ Failure Assessment score, serum lactate level, and 24-h urine output.</p><p><strong>Conclusion: </strong>Dynamic decision models supported by machine learning are capable of dealing with complex factors in CRRT and effectively predicting the outcome of discontinuation.</p>\",\"PeriodicalId\":8953,\"journal\":{\"name\":\"Blood Purification\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood Purification\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000539787\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Purification","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000539787","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Machine Learning-Aided Decision-Making Model for the Discontinuation of Continuous Renal Replacement Therapy.
Introduction: Continuous renal replacement therapy (CRRT) is a primary form of renal support for patients with acute kidney injury in an intensive care unit. Making an accurate decision of discontinuation is crucial for the prognosis of patients. Previous research has mostly focused on the univariate and multivariate analysis of factors in CRRT, without the capacity to capture the complexity of the decision-making process. The present study thus developed a dynamic, interpretable decision model for CRRT discontinuation.
Method: The study adopted a cohort of 1,234 adult patients admitted to an intensive care unit in the MIMIC-IV database. We used the eXtreme Gradient Boosting (XGBoost) machine learning algorithm to construct dynamic discontinuation decision models across 4 time points. SHapley Additive exPlanation (SHAP) analysis was conducted to exhibit the contributions of individual features to the model output.
Result: Of the 1,234 included patients with CRRT, 596 (48.3%) successfully discontinued CRRT. The dynamic prediction by the XGBoost model produced an area under the curve of 0.848, with accuracy, sensitivity, and specificity of 0.782, 0.786, and 0.776, respectively. The performance of the XGBoost model was far superior to other test models. SHAP demonstrated that the features that contributed most to the model results were the Sequential Organ Failure Assessment score, serum lactate level, and 24-h urine output.
Conclusion: Dynamic decision models supported by machine learning are capable of dealing with complex factors in CRRT and effectively predicting the outcome of discontinuation.
期刊介绍:
Practical information on hemodialysis, hemofiltration, peritoneal dialysis and apheresis is featured in this journal. Recognizing the critical importance of equipment and procedures, particular emphasis has been placed on reports, drawn from a wide range of fields, describing technical advances and improvements in methodology. Papers reflect the search for cost-effective solutions which increase not only patient survival but also patient comfort and disease improvement through prevention or correction of undesirable effects. Advances in vascular access and blood anticoagulation, problems associated with exposure of blood to foreign surfaces and acute-care nephrology, including continuous therapies, also receive attention. Nephrologists, internists, intensivists and hospital staff involved in dialysis, apheresis and immunoadsorption for acute and chronic solid organ failure will find this journal useful and informative. ''Blood Purification'' also serves as a platform for multidisciplinary experiences involving nephrologists, cardiologists and critical care physicians in order to expand the level of interaction between different disciplines and specialities.