CG001 是一种 C3b 靶向补体抑制剂,可阻断三种补体途径:开发与临床前评估。

IF 7.4 1区 医学 Q1 HEMATOLOGY Blood advances Pub Date : 2024-08-13 DOI:10.1182/bloodadvances.2024012874
Ling Li, Peipei Ding, Yanrong Dong, Shupei Shen, Xinyue Lv, Jie Yu, Luying Li, Jianfeng Chen, Pilin Wang, Bing Han, Ting Xu, Weiguo Hu
{"title":"CG001 是一种 C3b 靶向补体抑制剂,可阻断三种补体途径:开发与临床前评估。","authors":"Ling Li, Peipei Ding, Yanrong Dong, Shupei Shen, Xinyue Lv, Jie Yu, Luying Li, Jianfeng Chen, Pilin Wang, Bing Han, Ting Xu, Weiguo Hu","doi":"10.1182/bloodadvances.2024012874","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Excessively activated or dysregulated complement activation may contribute to the pathogenesis of a wide range of human diseases, thus leading to a surge in complement inhibitors. Herein, we developed a human-derived and antibody-like C3b-targeted fusion protein (CRIg-FH-Fc) x2, termed CG001, that could potently block all 3 complement pathways. Complement receptor of the immunoglobulin superfamily (CRIg) and factor H (FH) bind to distinct sites in C3b and synergistically inhibit complement activation. CRIg occupancy in C3b prevents the recruitment of C3 and C5 substrates, whereas FH occupancy in C3b accelerates the decay of C3/C5 convertases and promotes the factor I-mediated degradation and inactivation of C3b. CG001 also showed therapeutic effects in alternative pathways-induced hemolytic mouse and classical pathways-induced mesangial proliferative glomerulonephritis rat models. In the pharmacological/toxicological evaluation in rats and cynomolgus monkeys, CG001 displayed an antibody-like pharmacokinetic profile, a convincing complement inhibitory effect, and no observable toxic effects. Therefore, CG001 holds substantial potential for human clinical studies.</p>","PeriodicalId":9228,"journal":{"name":"Blood advances","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334799/pdf/","citationCount":"0","resultStr":"{\"title\":\"CG001, a C3b-targeted complement inhibitor, blocks 3 complement pathways: development and preclinical evaluation.\",\"authors\":\"Ling Li, Peipei Ding, Yanrong Dong, Shupei Shen, Xinyue Lv, Jie Yu, Luying Li, Jianfeng Chen, Pilin Wang, Bing Han, Ting Xu, Weiguo Hu\",\"doi\":\"10.1182/bloodadvances.2024012874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Excessively activated or dysregulated complement activation may contribute to the pathogenesis of a wide range of human diseases, thus leading to a surge in complement inhibitors. Herein, we developed a human-derived and antibody-like C3b-targeted fusion protein (CRIg-FH-Fc) x2, termed CG001, that could potently block all 3 complement pathways. Complement receptor of the immunoglobulin superfamily (CRIg) and factor H (FH) bind to distinct sites in C3b and synergistically inhibit complement activation. CRIg occupancy in C3b prevents the recruitment of C3 and C5 substrates, whereas FH occupancy in C3b accelerates the decay of C3/C5 convertases and promotes the factor I-mediated degradation and inactivation of C3b. CG001 also showed therapeutic effects in alternative pathways-induced hemolytic mouse and classical pathways-induced mesangial proliferative glomerulonephritis rat models. In the pharmacological/toxicological evaluation in rats and cynomolgus monkeys, CG001 displayed an antibody-like pharmacokinetic profile, a convincing complement inhibitory effect, and no observable toxic effects. Therefore, CG001 holds substantial potential for human clinical studies.</p>\",\"PeriodicalId\":9228,\"journal\":{\"name\":\"Blood advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334799/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood advances\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1182/bloodadvances.2024012874\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/bloodadvances.2024012874","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

过度激活或失调的补体激活可能是多种人类疾病的发病机制之一,因此导致了补体抑制剂的激增。在此,我们开发了一种来源于人类且类似抗体的C3b靶向融合蛋白(CRIg-FH-Fc)*2,称为CG001,它能有效阻断所有三种补体途径。CRIg和FH与C3b中的不同位点结合,协同抑制补体激活。CRIg 在 C3b 中的占据阻止了 C3 和 C5 底物的募集,而 FH 在 C3b 中的占据加速了 C3/C5 转化酶的衰变,促进了因子 I 介导的 C3b 降解和失活。CG001 还在 AP 诱导的溶血小鼠模型和 CP 诱导的 MsPGN 大鼠模型中显示出治疗效果。在对大鼠和猴的药理/毒理评估中,CG001 显示出类似抗体的药代动力学特征、令人信服的补体抑制作用,并且没有观察到毒性反应。因此,CG001 具有进行人体临床研究的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CG001, a C3b-targeted complement inhibitor, blocks 3 complement pathways: development and preclinical evaluation.

Abstract: Excessively activated or dysregulated complement activation may contribute to the pathogenesis of a wide range of human diseases, thus leading to a surge in complement inhibitors. Herein, we developed a human-derived and antibody-like C3b-targeted fusion protein (CRIg-FH-Fc) x2, termed CG001, that could potently block all 3 complement pathways. Complement receptor of the immunoglobulin superfamily (CRIg) and factor H (FH) bind to distinct sites in C3b and synergistically inhibit complement activation. CRIg occupancy in C3b prevents the recruitment of C3 and C5 substrates, whereas FH occupancy in C3b accelerates the decay of C3/C5 convertases and promotes the factor I-mediated degradation and inactivation of C3b. CG001 also showed therapeutic effects in alternative pathways-induced hemolytic mouse and classical pathways-induced mesangial proliferative glomerulonephritis rat models. In the pharmacological/toxicological evaluation in rats and cynomolgus monkeys, CG001 displayed an antibody-like pharmacokinetic profile, a convincing complement inhibitory effect, and no observable toxic effects. Therefore, CG001 holds substantial potential for human clinical studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Blood advances
Blood advances Medicine-Hematology
CiteScore
12.70
自引率
2.70%
发文量
840
期刊介绍: Blood Advances, a semimonthly medical journal published by the American Society of Hematology, marks the first addition to the Blood family in 70 years. This peer-reviewed, online-only, open-access journal was launched under the leadership of founding editor-in-chief Robert Negrin, MD, from Stanford University Medical Center in Stanford, CA, with its inaugural issue released on November 29, 2016. Blood Advances serves as an international platform for original articles detailing basic laboratory, translational, and clinical investigations in hematology. The journal comprehensively covers all aspects of hematology, including disorders of leukocytes (both benign and malignant), erythrocytes, platelets, hemostatic mechanisms, vascular biology, immunology, and hematologic oncology. Each article undergoes a rigorous peer-review process, with selection based on the originality of the findings, the high quality of the work presented, and the clarity of the presentation.
期刊最新文献
Selective Btk inhibition by PRN1008/PRN473 blocks human CLEC-2, and PRN473 reduces venous thrombosis formation in mice. NK- and T-cell repertoire is established early after allogeneic HSCT and is imprinted by CMV reactivation. Molecular mechanisms promoting long-term cytopenia after BCMA CAR-T therapy in multiple myeloma. Atrial arrhythmia in adults with sickle cell anemia: a missing link toward understanding and preventing strokes. Artificial intelligence enabled interpretation of ECG images to predict hematopoietic cell transplantation toxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1