早期高胆固醇血症诱导的离体心肌细胞电收缩重塑

IF 2.9 4区 生物学 Q2 BIOPHYSICS Journal of Bioenergetics and Biomembranes Pub Date : 2024-08-01 Epub Date: 2024-06-13 DOI:10.1007/s10863-024-10026-x
Artur Santos-Miranda, Julliane V Joviano-Santos, Ivan Lobo Sousa Marques, Stefany Cau, Fabrício A Carvalho, Júlia R Fraga, Jacqueline I Alvarez-Leite, Danilo Roman-Campos, Jader S Cruz
{"title":"早期高胆固醇血症诱导的离体心肌细胞电收缩重塑","authors":"Artur Santos-Miranda, Julliane V Joviano-Santos, Ivan Lobo Sousa Marques, Stefany Cau, Fabrício A Carvalho, Júlia R Fraga, Jacqueline I Alvarez-Leite, Danilo Roman-Campos, Jader S Cruz","doi":"10.1007/s10863-024-10026-x","DOIUrl":null,"url":null,"abstract":"<p><p>Hypercholesterolemia is one of the most important risk factors for cardiovascular diseases. However, it is mostly associated with vascular dysfunction and atherosclerotic lesions, while evidence of direct effects of hypercholesterolemia on cardiomyocytes and heart function is still incomplete and controversial. In this study, we assessed the direct effects of hypercholesterolemia on heart function and the electro-contractile properties of isolated cardiomyocytes. After 5 weeks, male Swiss mice fed with AIN-93 diet added with 1.25% cholesterol (CHO), developed an increase in total serum cholesterol levels and cardiomyocytes cholesterol content. These changes led to altered electrocardiographic records, with a shortening of the QT interval. Isolated cardiomyocytes displayed a shortening of the action potential duration with increased rate of depolarization, which was explained by increased I<sub>K</sub>, reduced I<sub>Ca.L</sub> and altered I<sub>Na</sub> voltage-dependent inactivation. Also, reduced diastolic [Ca<sup>2+</sup>]<sub>i</sub> was found with preserved adrenergic response and cellular contraction function. However, contraction of isolated hearts is impaired in isolated CHO hearts, before and after ischemia/reperfusion, although CHO heart was less susceptible to arrhythmic contractions. Overall, our results demonstrate that early hypercholesterolemia-driven increase in cellular cholesterol content is associated with direct modulation of the heart and cardiomyocytes' excitability, Ca<sup>2+</sup> handling, and contraction.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":"373-387"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocontractile remodeling of isolated cardiomyocytes induced during early-stage hypercholesterolemia.\",\"authors\":\"Artur Santos-Miranda, Julliane V Joviano-Santos, Ivan Lobo Sousa Marques, Stefany Cau, Fabrício A Carvalho, Júlia R Fraga, Jacqueline I Alvarez-Leite, Danilo Roman-Campos, Jader S Cruz\",\"doi\":\"10.1007/s10863-024-10026-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypercholesterolemia is one of the most important risk factors for cardiovascular diseases. However, it is mostly associated with vascular dysfunction and atherosclerotic lesions, while evidence of direct effects of hypercholesterolemia on cardiomyocytes and heart function is still incomplete and controversial. In this study, we assessed the direct effects of hypercholesterolemia on heart function and the electro-contractile properties of isolated cardiomyocytes. After 5 weeks, male Swiss mice fed with AIN-93 diet added with 1.25% cholesterol (CHO), developed an increase in total serum cholesterol levels and cardiomyocytes cholesterol content. These changes led to altered electrocardiographic records, with a shortening of the QT interval. Isolated cardiomyocytes displayed a shortening of the action potential duration with increased rate of depolarization, which was explained by increased I<sub>K</sub>, reduced I<sub>Ca.L</sub> and altered I<sub>Na</sub> voltage-dependent inactivation. Also, reduced diastolic [Ca<sup>2+</sup>]<sub>i</sub> was found with preserved adrenergic response and cellular contraction function. However, contraction of isolated hearts is impaired in isolated CHO hearts, before and after ischemia/reperfusion, although CHO heart was less susceptible to arrhythmic contractions. Overall, our results demonstrate that early hypercholesterolemia-driven increase in cellular cholesterol content is associated with direct modulation of the heart and cardiomyocytes' excitability, Ca<sup>2+</sup> handling, and contraction.</p>\",\"PeriodicalId\":15080,\"journal\":{\"name\":\"Journal of Bioenergetics and Biomembranes\",\"volume\":\" \",\"pages\":\"373-387\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioenergetics and Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10863-024-10026-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergetics and Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-024-10026-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

高胆固醇血症是心血管疾病最重要的危险因素之一。然而,高胆固醇血症主要与血管功能障碍和动脉粥样硬化病变有关,而高胆固醇血症对心肌细胞和心脏功能直接影响的证据尚不完整,且存在争议。在这项研究中,我们评估了高胆固醇血症对心脏功能和离体心肌细胞电收缩特性的直接影响。用添加了 1.25% 胆固醇(CHO)的 AIN-93 食物喂养雄性瑞士小鼠 5 周后,小鼠血清总胆固醇水平和心肌细胞胆固醇含量增加。这些变化导致心电图记录改变,QT 间期缩短。隔离的心肌细胞显示动作电位持续时间缩短,去极化速率增加,其原因是 IK 增加、ICa.L 减少和 INa 电压依赖性失活改变。此外,在肾上腺素能反应和细胞收缩功能保持不变的情况下,舒张压[Ca2+]i也有所降低。然而,在缺血/再灌注前后,离体 CHO 心脏的收缩功能受损,尽管 CHO 心脏不易发生心律失常性收缩。总之,我们的研究结果表明,早期高胆固醇血症驱动的细胞胆固醇含量增加与直接调节心脏和心肌细胞的兴奋性、Ca2+ 处理和收缩有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrocontractile remodeling of isolated cardiomyocytes induced during early-stage hypercholesterolemia.

Hypercholesterolemia is one of the most important risk factors for cardiovascular diseases. However, it is mostly associated with vascular dysfunction and atherosclerotic lesions, while evidence of direct effects of hypercholesterolemia on cardiomyocytes and heart function is still incomplete and controversial. In this study, we assessed the direct effects of hypercholesterolemia on heart function and the electro-contractile properties of isolated cardiomyocytes. After 5 weeks, male Swiss mice fed with AIN-93 diet added with 1.25% cholesterol (CHO), developed an increase in total serum cholesterol levels and cardiomyocytes cholesterol content. These changes led to altered electrocardiographic records, with a shortening of the QT interval. Isolated cardiomyocytes displayed a shortening of the action potential duration with increased rate of depolarization, which was explained by increased IK, reduced ICa.L and altered INa voltage-dependent inactivation. Also, reduced diastolic [Ca2+]i was found with preserved adrenergic response and cellular contraction function. However, contraction of isolated hearts is impaired in isolated CHO hearts, before and after ischemia/reperfusion, although CHO heart was less susceptible to arrhythmic contractions. Overall, our results demonstrate that early hypercholesterolemia-driven increase in cellular cholesterol content is associated with direct modulation of the heart and cardiomyocytes' excitability, Ca2+ handling, and contraction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
22
审稿时长
6-12 weeks
期刊介绍: The Journal of Bioenergetics and Biomembranes is an international journal devoted to the publication of original research that contributes to fundamental knowledge in the areas of bioenergetics, biomembranes, and transport, including oxidative phosphorylation, photosynthesis, muscle contraction, as well as cellular and systemic metabolism. The timely research in this international journal benefits biophysicists, membrane biologists, cell biologists, biochemists, molecular biologists, physiologists, endocrinologists, and bio-organic chemists.
期刊最新文献
Lithium compromises the bioenergetic reserve of cardiomyoblasts mitochondria. Amyloid beta (Aβ) fibrillation kinetics and its impact on membrane polarity. Sirt6 regulates the Notch signaling pathway and mediates autophagy and regulates podocyte damage in diabetic nephropathy. Nigericin modifies the mechanism of the uncoupling action of bile acids in rat liver mitochondria by converting ΔpH into Δψ. Acute CCl4-induced intoxication reduces complex I, but not complex II-based mitochondrial bioenergetics - protective role of succinate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1