{"title":"某些弱纹理材料屈服面的严格凸度","authors":"Chi-Sing Man , Mojia Huang","doi":"10.1016/j.mechmat.2024.105052","DOIUrl":null,"url":null,"abstract":"<div><p>Let Sym<span><math><msub><mrow></mrow><mrow><mn>0</mn></mrow></msub></math></span> be the space of traceless symmetric second-order tensors. We say that a polycrystalline elastic–plastic material is weakly-textured if its yield function <span><math><mrow><mi>f</mi><mo>:</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub><mo>→</mo><mi>R</mi></mrow></math></span> is the sum of a texture-independent isotropic part <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow></msub></math></span> and an anisotropic part which is linear in the relevant texture coefficients. Let <span><math><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>S</mi><mo>≔</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mo>⊂</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> be the yield surface of the weakly-textured material in question. We present a sufficient condition (*), namely that <span><math><mrow><msup><mrow><mo>∇</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>f</mi><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> be positive definite for each <span><math><mrow><mi>S</mi><mo>∈</mo><mi>S</mi></mrow></math></span>, for a smooth yield surface <span><math><mrow><mi>S</mi></mrow></math></span> to be strictly convex in Sym<span><math><msub><mrow></mrow><mrow><mn>0</mn></mrow></msub></math></span>. We apply this sufficient condition to weakly-textured materials with yield functions that satisfy the following conditions: (i) the yield functions <span><math><mi>f</mi></math></span> and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow></msub></math></span> are smooth; (ii) <span><math><mrow><msup><mrow><mo>∇</mo></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> is positive definite for each <span><math><mi>S</mi></math></span> in <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>iso</mtext></mrow></msub><mo>≔</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mo>⊂</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>. We prove that the yield surface <span><math><mrow><mi>S</mi><mo>⊂</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> of such weakly-textured material is strictly convex if the texture coefficients in <span><math><mi>f</mi></math></span> are sufficiently small. As illustration for practical applications, by appealing to condition (*) we study the strict convexity of the yield surface pertaining to a weakly-textured orthorhombic aggregate of cubic crystallites which has a quadratic yield function of the type proposed by Hill in 1948. Moreover, we show that all 35 samples of cold-rolled and annealed low-carbon steel sheets studied by Stickels and Mould have their quadratic yield functions and corresponding yield surfaces strictly convex.</p></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strict convexity of yield surfaces of some weakly-textured materials\",\"authors\":\"Chi-Sing Man , Mojia Huang\",\"doi\":\"10.1016/j.mechmat.2024.105052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let Sym<span><math><msub><mrow></mrow><mrow><mn>0</mn></mrow></msub></math></span> be the space of traceless symmetric second-order tensors. We say that a polycrystalline elastic–plastic material is weakly-textured if its yield function <span><math><mrow><mi>f</mi><mo>:</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub><mo>→</mo><mi>R</mi></mrow></math></span> is the sum of a texture-independent isotropic part <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow></msub></math></span> and an anisotropic part which is linear in the relevant texture coefficients. Let <span><math><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>S</mi><mo>≔</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mo>⊂</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> be the yield surface of the weakly-textured material in question. We present a sufficient condition (*), namely that <span><math><mrow><msup><mrow><mo>∇</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>f</mi><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> be positive definite for each <span><math><mrow><mi>S</mi><mo>∈</mo><mi>S</mi></mrow></math></span>, for a smooth yield surface <span><math><mrow><mi>S</mi></mrow></math></span> to be strictly convex in Sym<span><math><msub><mrow></mrow><mrow><mn>0</mn></mrow></msub></math></span>. We apply this sufficient condition to weakly-textured materials with yield functions that satisfy the following conditions: (i) the yield functions <span><math><mi>f</mi></math></span> and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow></msub></math></span> are smooth; (ii) <span><math><mrow><msup><mrow><mo>∇</mo></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> is positive definite for each <span><math><mi>S</mi></math></span> in <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>iso</mtext></mrow></msub><mo>≔</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mtext>iso</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mo>⊂</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>. We prove that the yield surface <span><math><mrow><mi>S</mi><mo>⊂</mo><msub><mrow><mtext>Sym</mtext></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> of such weakly-textured material is strictly convex if the texture coefficients in <span><math><mi>f</mi></math></span> are sufficiently small. As illustration for practical applications, by appealing to condition (*) we study the strict convexity of the yield surface pertaining to a weakly-textured orthorhombic aggregate of cubic crystallites which has a quadratic yield function of the type proposed by Hill in 1948. Moreover, we show that all 35 samples of cold-rolled and annealed low-carbon steel sheets studied by Stickels and Mould have their quadratic yield functions and corresponding yield surfaces strictly convex.</p></div>\",\"PeriodicalId\":18296,\"journal\":{\"name\":\"Mechanics of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167663624001443\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663624001443","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Strict convexity of yield surfaces of some weakly-textured materials
Let Sym be the space of traceless symmetric second-order tensors. We say that a polycrystalline elastic–plastic material is weakly-textured if its yield function is the sum of a texture-independent isotropic part and an anisotropic part which is linear in the relevant texture coefficients. Let and be the yield surface of the weakly-textured material in question. We present a sufficient condition (*), namely that be positive definite for each , for a smooth yield surface to be strictly convex in Sym. We apply this sufficient condition to weakly-textured materials with yield functions that satisfy the following conditions: (i) the yield functions and are smooth; (ii) is positive definite for each in . We prove that the yield surface of such weakly-textured material is strictly convex if the texture coefficients in are sufficiently small. As illustration for practical applications, by appealing to condition (*) we study the strict convexity of the yield surface pertaining to a weakly-textured orthorhombic aggregate of cubic crystallites which has a quadratic yield function of the type proposed by Hill in 1948. Moreover, we show that all 35 samples of cold-rolled and annealed low-carbon steel sheets studied by Stickels and Mould have their quadratic yield functions and corresponding yield surfaces strictly convex.
期刊介绍:
Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.