{"title":"在学习中通过加强道路特征调查从卫星图像中提取道路","authors":"Shiming Feng, Fei Hou, Jialu Chen, Wencheng Wang","doi":"10.1002/cav.2275","DOIUrl":null,"url":null,"abstract":"<p>It is a hot topic to extract road maps from satellite images. However, it is still very challenging with existing methods to achieve high-quality results, because the regions covered by satellite images are very large and the roads are slender, complex and only take up a small part of a satellite image, making it difficult to distinguish roads from the background in satellite images. In this article, we address this challenge by presenting two modules to more effectively learn road features, and so improving road extraction. The first module exploits the differences between the patches containing roads and the patches containing no road to exclude the background regions as many as possible, by which the small part containing roads can be more specifically investigated for improvement. The second module enhances feature alignment in decoding feature maps by using strip convolution in combination with the attention mechanism. These two modules can be easily integrated into the networks of existing learning methods for improvement. Experimental results show that our modules can help existing methods to achieve high-quality results, superior to the state-of-the-art methods.</p>","PeriodicalId":50645,"journal":{"name":"Computer Animation and Virtual Worlds","volume":"35 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracting roads from satellite images via enhancing road feature investigation in learning\",\"authors\":\"Shiming Feng, Fei Hou, Jialu Chen, Wencheng Wang\",\"doi\":\"10.1002/cav.2275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is a hot topic to extract road maps from satellite images. However, it is still very challenging with existing methods to achieve high-quality results, because the regions covered by satellite images are very large and the roads are slender, complex and only take up a small part of a satellite image, making it difficult to distinguish roads from the background in satellite images. In this article, we address this challenge by presenting two modules to more effectively learn road features, and so improving road extraction. The first module exploits the differences between the patches containing roads and the patches containing no road to exclude the background regions as many as possible, by which the small part containing roads can be more specifically investigated for improvement. The second module enhances feature alignment in decoding feature maps by using strip convolution in combination with the attention mechanism. These two modules can be easily integrated into the networks of existing learning methods for improvement. Experimental results show that our modules can help existing methods to achieve high-quality results, superior to the state-of-the-art methods.</p>\",\"PeriodicalId\":50645,\"journal\":{\"name\":\"Computer Animation and Virtual Worlds\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Animation and Virtual Worlds\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cav.2275\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Animation and Virtual Worlds","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cav.2275","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Extracting roads from satellite images via enhancing road feature investigation in learning
It is a hot topic to extract road maps from satellite images. However, it is still very challenging with existing methods to achieve high-quality results, because the regions covered by satellite images are very large and the roads are slender, complex and only take up a small part of a satellite image, making it difficult to distinguish roads from the background in satellite images. In this article, we address this challenge by presenting two modules to more effectively learn road features, and so improving road extraction. The first module exploits the differences between the patches containing roads and the patches containing no road to exclude the background regions as many as possible, by which the small part containing roads can be more specifically investigated for improvement. The second module enhances feature alignment in decoding feature maps by using strip convolution in combination with the attention mechanism. These two modules can be easily integrated into the networks of existing learning methods for improvement. Experimental results show that our modules can help existing methods to achieve high-quality results, superior to the state-of-the-art methods.
期刊介绍:
With the advent of very powerful PCs and high-end graphics cards, there has been an incredible development in Virtual Worlds, real-time computer animation and simulation, games. But at the same time, new and cheaper Virtual Reality devices have appeared allowing an interaction with these real-time Virtual Worlds and even with real worlds through Augmented Reality. Three-dimensional characters, especially Virtual Humans are now of an exceptional quality, which allows to use them in the movie industry. But this is only a beginning, as with the development of Artificial Intelligence and Agent technology, these characters will become more and more autonomous and even intelligent. They will inhabit the Virtual Worlds in a Virtual Life together with animals and plants.