富铁深下地幔中菱镁矿的高钠溶解度

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Geochemistry Geophysics Geosystems Pub Date : 2024-06-12 DOI:10.1029/2023GC011390
Susannah M. Dorfman, Han Hsu, Farhang Nabiei, Marco Cantoni, James Badro, Vitali B. Prakapenka
{"title":"富铁深下地幔中菱镁矿的高钠溶解度","authors":"Susannah M. Dorfman,&nbsp;Han Hsu,&nbsp;Farhang Nabiei,&nbsp;Marco Cantoni,&nbsp;James Badro,&nbsp;Vitali B. Prakapenka","doi":"10.1029/2023GC011390","DOIUrl":null,"url":null,"abstract":"<p>(Mg,Fe)O ferropericlase-magnesiowüstite has been proposed to host the majority of Earth's sodium, but the mechanism and capacity for incorporating the alkali cation remain unclear. In this work, experiments in the laser-heated diamond anvil cell and first-principles calculations determine the solubility of sodium and favorability of sodium incorporation in iron-rich magnesiowüstite relative to (Mg,Fe)SiO<sub>3</sub> bridgmanite. Reaction of Mg/(Mg + Fe) (Mg#) 55 and 28 olivine with NaCl at 33–128 GPa and 1600–3000 K produces iron-rich magnesiowüstite containing several percent sodium, while iron-rich bridgmanite contains little to no detectable sodium. In sodium-saturated magnesiowüstite, sodium number [Na/(Na + Mg + Fe)] is 2–5 atomic percent at pressures below 60 GPa and drastically increases to 10–20 atomic percent at deep lower mantle pressures. For these two compositions, there is no significant dependence of the results on Mg#. Our calculations not only show consistent results with experiments but further indicate that such an increase in solubility and partitioning of Na into magnesiowüstite is driven by the spin transition in iron. These results provide fundamental constraints on the crystal chemistry of sodium at lower-mantle conditions. If the sodium capacity of (Mg,Fe)O is not strongly dependent on Mg#, (Mg,Fe)O in the lower mantle may have the capacity to store the entire sodium budget of the Earth.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GC011390","citationCount":"0","resultStr":"{\"title\":\"High Sodium Solubility in Magnesiowüstite in Iron-Rich Deep Lower Mantle\",\"authors\":\"Susannah M. Dorfman,&nbsp;Han Hsu,&nbsp;Farhang Nabiei,&nbsp;Marco Cantoni,&nbsp;James Badro,&nbsp;Vitali B. Prakapenka\",\"doi\":\"10.1029/2023GC011390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>(Mg,Fe)O ferropericlase-magnesiowüstite has been proposed to host the majority of Earth's sodium, but the mechanism and capacity for incorporating the alkali cation remain unclear. In this work, experiments in the laser-heated diamond anvil cell and first-principles calculations determine the solubility of sodium and favorability of sodium incorporation in iron-rich magnesiowüstite relative to (Mg,Fe)SiO<sub>3</sub> bridgmanite. Reaction of Mg/(Mg + Fe) (Mg#) 55 and 28 olivine with NaCl at 33–128 GPa and 1600–3000 K produces iron-rich magnesiowüstite containing several percent sodium, while iron-rich bridgmanite contains little to no detectable sodium. In sodium-saturated magnesiowüstite, sodium number [Na/(Na + Mg + Fe)] is 2–5 atomic percent at pressures below 60 GPa and drastically increases to 10–20 atomic percent at deep lower mantle pressures. For these two compositions, there is no significant dependence of the results on Mg#. Our calculations not only show consistent results with experiments but further indicate that such an increase in solubility and partitioning of Na into magnesiowüstite is driven by the spin transition in iron. These results provide fundamental constraints on the crystal chemistry of sodium at lower-mantle conditions. If the sodium capacity of (Mg,Fe)O is not strongly dependent on Mg#, (Mg,Fe)O in the lower mantle may have the capacity to store the entire sodium budget of the Earth.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GC011390\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GC011390\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GC011390","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

(Mg,Fe)O铁过氧化物酶-镁矾土被认为容纳了地球上的大部分钠,但掺入碱阳离子的机制和能力仍不清楚。在这项研究中,通过激光加热金刚石砧室实验和第一原理计算,确定了钠的溶解度以及相对于(Mg,Fe)SiO3 桥长石而言钠在富铁镁矾石中的掺入能力。Mg/(Mg + Fe) (Mg#) 55 和 28橄榄石在 33-128 GPa 和 1600-3000 K 条件下与氯化钠反应,生成了富铁镁矾石,其中含有百分之几的钠,而富铁桥长石几乎检测不到钠。在钠饱和的菱镁矿中,钠数[Na/(Na + Mg + Fe)]在低于 60 GPa 的压力下为 2-5 原子%,而在较低的地幔深层压力下则急剧增加到 10-20 原子%。对于这两种成分,计算结果与 Mg# 没有明显的关系。我们的计算不仅显示了与实验一致的结果,而且进一步表明,Na在菱镁矿中的溶解度和分配的增加是由铁的自旋转变驱动的。这些结果为钠在低幔条件下的晶体化学提供了基本约束。如果(Mg,Fe)O 的钠容量并不强烈依赖于 Mg#,那么下地幔中的(Mg,Fe)O 可能有能力储存地球的全部钠预算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High Sodium Solubility in Magnesiowüstite in Iron-Rich Deep Lower Mantle

(Mg,Fe)O ferropericlase-magnesiowüstite has been proposed to host the majority of Earth's sodium, but the mechanism and capacity for incorporating the alkali cation remain unclear. In this work, experiments in the laser-heated diamond anvil cell and first-principles calculations determine the solubility of sodium and favorability of sodium incorporation in iron-rich magnesiowüstite relative to (Mg,Fe)SiO3 bridgmanite. Reaction of Mg/(Mg + Fe) (Mg#) 55 and 28 olivine with NaCl at 33–128 GPa and 1600–3000 K produces iron-rich magnesiowüstite containing several percent sodium, while iron-rich bridgmanite contains little to no detectable sodium. In sodium-saturated magnesiowüstite, sodium number [Na/(Na + Mg + Fe)] is 2–5 atomic percent at pressures below 60 GPa and drastically increases to 10–20 atomic percent at deep lower mantle pressures. For these two compositions, there is no significant dependence of the results on Mg#. Our calculations not only show consistent results with experiments but further indicate that such an increase in solubility and partitioning of Na into magnesiowüstite is driven by the spin transition in iron. These results provide fundamental constraints on the crystal chemistry of sodium at lower-mantle conditions. If the sodium capacity of (Mg,Fe)O is not strongly dependent on Mg#, (Mg,Fe)O in the lower mantle may have the capacity to store the entire sodium budget of the Earth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
期刊最新文献
A REE Inverse Model From Bulk Distribution Coefficients and Boundary Conditions: Results for Shield and Rejuvenated Stage Hawaiian Volcanoes 3D Shear Velocity Structure of the Caribbean—Northwestern South America Subduction Zone From Ambient Noise and Ballistic Rayleigh Wave Tomography Incorporation of Dissolved Heavy Metals Into the Skeleton of Porites Corals Based on Multi-Element Culturing Experiments Biomarkers Indicate Pliocene Uplift of the Maxian Mountains, Northeastern Tibetan Plateau Late Cretaceous and Early Paleogene Fluid Circulation and Microbial Activity in Deep Fracture Networks of the Precambrian Basement of Western Greenland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1