Jonathan Boretsky, Christopher Eur, Lauren Williams
{"title":"旗正多面体的多面体几何和热带几何","authors":"Jonathan Boretsky, Christopher Eur, Lauren Williams","doi":"10.2140/ant.2024.18.1333","DOIUrl":null,"url":null,"abstract":"<p>A <span>flag positroid </span>of ranks <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>r</mi></mstyle>\n<mo>:</mo><mo>=</mo>\n<mo stretchy=\"false\">(</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub>\n<mo><</mo>\n<mo>⋯</mo>\n<mo><</mo> <msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">)</mo></math> on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><mi>n</mi><mo stretchy=\"false\">]</mo></math> is a flag matroid that can be realized by a real <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub>\n<mo>×</mo>\n<mi>n</mi></math> matrix <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> such that the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub>\n<mo>×</mo> <msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub></math> minors of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> involving rows <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub></math> are nonnegative for all <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn>\n<mo>≤</mo>\n<mi>i</mi>\n<mo>≤</mo>\n<mi>k</mi></math>. In this paper we explore the polyhedral and tropical geometry of flag positroids, particularly when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>r</mi></mstyle>\n<mo>:</mo><mo>=</mo>\n<mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><mi>a</mi>\n<mo>+</mo> <mn>1</mn><mo>,</mo><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo><mo>,</mo><mi>b</mi><mo stretchy=\"false\">)</mo></math> is a sequence of consecutive numbers. In this case we show that the nonnegative tropical flag variety <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi> TrFl</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mstyle mathvariant=\"bold-italic\"><mi>r</mi></mstyle><mo>,</mo><mi>n</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msubsup></math> equals the nonnegative flag Dressian <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi> FlDr</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mstyle mathvariant=\"bold-italic\"><mi>r</mi></mstyle><mo>,</mo><mi>n</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msubsup></math>, and that the points <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi>\n<mo>=</mo>\n<mo stretchy=\"false\">(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>,</mo><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>b</mi></mrow></msub><mo stretchy=\"false\">)</mo></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi> TrFl</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mstyle mathvariant=\"bold-italic\"><mi>r</mi></mstyle><mo>,</mo><mi>n</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msubsup>\n<mo>=</mo><msubsup><mrow><mi> FlDr</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mstyle mathvariant=\"bold-italic\"><mi>r</mi></mstyle><mo>,</mo><mi>n</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msubsup></math> give rise to coherent subdivisions of the flag positroid polytope <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mo stretchy=\"false\">(</mo><munder><mrow><mstyle mathvariant=\"bold\"><mi>μ</mi></mstyle></mrow><mo accent=\"true\">¯</mo></munder><mo stretchy=\"false\">)</mo></math> into flag positroid polytopes. Our results have applications to Bruhat interval polytopes: for example, we show that a complete flag matroid polytope is a Bruhat interval polytope if and only if its <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mo>≤</mo> <mn>2</mn><mo stretchy=\"false\">)</mo></math>-dimensional faces are Bruhat interval polytopes. Our results also have applications to realizability questions. We define a <span>positively oriented flag matroid </span>to be a sequence of positively oriented matroids <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">)</mo></math> which is also an oriented flag matroid. We then prove that every positively oriented flag matroid of ranks <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>r</mi></mstyle>\n<mo>=</mo>\n<mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><mi>a</mi>\n<mo>+</mo> <mn>1</mn><mo>,</mo><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo><mo>,</mo><mi>b</mi><mo stretchy=\"false\">)</mo></math> is realizable. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"22 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyhedral and tropical geometry of flag positroids\",\"authors\":\"Jonathan Boretsky, Christopher Eur, Lauren Williams\",\"doi\":\"10.2140/ant.2024.18.1333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <span>flag positroid </span>of ranks <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mstyle mathvariant=\\\"bold-italic\\\"><mi>r</mi></mstyle>\\n<mo>:</mo><mo>=</mo>\\n<mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub>\\n<mo><</mo>\\n<mo>⋯</mo>\\n<mo><</mo> <msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math> on <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">[</mo><mi>n</mi><mo stretchy=\\\"false\\\">]</mo></math> is a flag matroid that can be realized by a real <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub>\\n<mo>×</mo>\\n<mi>n</mi></math> matrix <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>A</mi></math> such that the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub>\\n<mo>×</mo> <msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub></math> minors of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>A</mi></math> involving rows <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub></math> are nonnegative for all <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn>\\n<mo>≤</mo>\\n<mi>i</mi>\\n<mo>≤</mo>\\n<mi>k</mi></math>. In this paper we explore the polyhedral and tropical geometry of flag positroids, particularly when <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mstyle mathvariant=\\\"bold-italic\\\"><mi>r</mi></mstyle>\\n<mo>:</mo><mo>=</mo>\\n<mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mo>,</mo><mi>a</mi>\\n<mo>+</mo> <mn>1</mn><mo>,</mo><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo><mo>,</mo><mi>b</mi><mo stretchy=\\\"false\\\">)</mo></math> is a sequence of consecutive numbers. In this case we show that the nonnegative tropical flag variety <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mrow><mi> TrFl</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mstyle mathvariant=\\\"bold-italic\\\"><mi>r</mi></mstyle><mo>,</mo><mi>n</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msubsup></math> equals the nonnegative flag Dressian <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mrow><mi> FlDr</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mstyle mathvariant=\\\"bold-italic\\\"><mi>r</mi></mstyle><mo>,</mo><mi>n</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msubsup></math>, and that the points <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>μ</mi>\\n<mo>=</mo>\\n<mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>,</mo><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>b</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math> of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mrow><mi> TrFl</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mstyle mathvariant=\\\"bold-italic\\\"><mi>r</mi></mstyle><mo>,</mo><mi>n</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msubsup>\\n<mo>=</mo><msubsup><mrow><mi> FlDr</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mstyle mathvariant=\\\"bold-italic\\\"><mi>r</mi></mstyle><mo>,</mo><mi>n</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msubsup></math> give rise to coherent subdivisions of the flag positroid polytope <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>P</mi><mo stretchy=\\\"false\\\">(</mo><munder><mrow><mstyle mathvariant=\\\"bold\\\"><mi>μ</mi></mstyle></mrow><mo accent=\\\"true\\\">¯</mo></munder><mo stretchy=\\\"false\\\">)</mo></math> into flag positroid polytopes. Our results have applications to Bruhat interval polytopes: for example, we show that a complete flag matroid polytope is a Bruhat interval polytope if and only if its <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mo>≤</mo> <mn>2</mn><mo stretchy=\\\"false\\\">)</mo></math>-dimensional faces are Bruhat interval polytopes. Our results also have applications to realizability questions. We define a <span>positively oriented flag matroid </span>to be a sequence of positively oriented matroids <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo><mo>,</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math> which is also an oriented flag matroid. We then prove that every positively oriented flag matroid of ranks <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mstyle mathvariant=\\\"bold-italic\\\"><mi>r</mi></mstyle>\\n<mo>=</mo>\\n<mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mo>,</mo><mi>a</mi>\\n<mo>+</mo> <mn>1</mn><mo>,</mo><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo><mo>,</mo><mi>b</mi><mo stretchy=\\\"false\\\">)</mo></math> is realizable. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.1333\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1333","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Polyhedral and tropical geometry of flag positroids
A flag positroid of ranks on is a flag matroid that can be realized by a real matrix such that the minors of involving rows are nonnegative for all . In this paper we explore the polyhedral and tropical geometry of flag positroids, particularly when is a sequence of consecutive numbers. In this case we show that the nonnegative tropical flag variety equals the nonnegative flag Dressian , and that the points of give rise to coherent subdivisions of the flag positroid polytope into flag positroid polytopes. Our results have applications to Bruhat interval polytopes: for example, we show that a complete flag matroid polytope is a Bruhat interval polytope if and only if its -dimensional faces are Bruhat interval polytopes. Our results also have applications to realizability questions. We define a positively oriented flag matroid to be a sequence of positively oriented matroids which is also an oriented flag matroid. We then prove that every positively oriented flag matroid of ranks is realizable.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.