基于功能性凝胶的电化学储能技术

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2024-06-11 DOI:10.1021/acs.chemmater.4c00321
Jean G. A. Ruthes, Stefanie Arnold, Kaitlyn Prenger, Ana C. Jaski, Vanessa Klobukoski, Izabel C. Riegel-Vidotti and Volker Presser*, 
{"title":"基于功能性凝胶的电化学储能技术","authors":"Jean G. A. Ruthes,&nbsp;Stefanie Arnold,&nbsp;Kaitlyn Prenger,&nbsp;Ana C. Jaski,&nbsp;Vanessa Klobukoski,&nbsp;Izabel C. Riegel-Vidotti and Volker Presser*,&nbsp;","doi":"10.1021/acs.chemmater.4c00321","DOIUrl":null,"url":null,"abstract":"<p >The development of flexible and wearable electronics has grown in recent years with applications in different fields of industry and science. Consequently, the necessity of functional, flexible, safe, and reliable energy storage devices to meet this demand has increased. Since the classical electrochemical systems face structuration and operational limitations to match the needs of flexible devices, novel approaches have been in the research spotlight: gel polymer electrolytes (GPEs). Combining comparable ionic conductivity with liquid electrolytes with desirable mechanical stability, GPEs have been investigated in various electrochemical applications in sensors, actuators, and energy storage. This versatile class of quasi-solid material finds applications in the different components of energy storage devices. They are being investigated as electrodes, binders, electrolytes, and stand-alone systems due to desirable physical-chemical characteristics such as a wider potential operational window and high adhesion to solid electrode materials. Coalescing a liquid phase occluded into an entangled 3D polymeric matrix, these materials withstand elevated mechanical stress such as strain and compression, and they are also interesting materials for various applications. Moreover, they allow further functionalization to match the specific requirements of various energy storage systems. In this review, we summarize different applications of GPEs in energy storage devices, highlighting many valuable properties and emphasizing their enhancements compared to classical liquid electrochemical energy storage systems.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Gel-Based Electrochemical Energy Storage\",\"authors\":\"Jean G. A. Ruthes,&nbsp;Stefanie Arnold,&nbsp;Kaitlyn Prenger,&nbsp;Ana C. Jaski,&nbsp;Vanessa Klobukoski,&nbsp;Izabel C. Riegel-Vidotti and Volker Presser*,&nbsp;\",\"doi\":\"10.1021/acs.chemmater.4c00321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of flexible and wearable electronics has grown in recent years with applications in different fields of industry and science. Consequently, the necessity of functional, flexible, safe, and reliable energy storage devices to meet this demand has increased. Since the classical electrochemical systems face structuration and operational limitations to match the needs of flexible devices, novel approaches have been in the research spotlight: gel polymer electrolytes (GPEs). Combining comparable ionic conductivity with liquid electrolytes with desirable mechanical stability, GPEs have been investigated in various electrochemical applications in sensors, actuators, and energy storage. This versatile class of quasi-solid material finds applications in the different components of energy storage devices. They are being investigated as electrodes, binders, electrolytes, and stand-alone systems due to desirable physical-chemical characteristics such as a wider potential operational window and high adhesion to solid electrode materials. Coalescing a liquid phase occluded into an entangled 3D polymeric matrix, these materials withstand elevated mechanical stress such as strain and compression, and they are also interesting materials for various applications. Moreover, they allow further functionalization to match the specific requirements of various energy storage systems. In this review, we summarize different applications of GPEs in energy storage devices, highlighting many valuable properties and emphasizing their enhancements compared to classical liquid electrochemical energy storage systems.</p>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c00321\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c00321","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,柔性和可穿戴电子设备的发展日新月异,并应用于工业和科学的不同领域。因此,越来越需要功能强大、灵活、安全可靠的储能设备来满足这一需求。由于传统的电化学系统面临着结构和操作上的限制,无法满足柔性设备的需求,因此新型方法成为研究的焦点:凝胶聚合物电解质(GPEs)。凝胶聚合物电解质具有与液态电解质相当的离子传导性和理想的机械稳定性,已在传感器、致动器和储能等各种电化学应用中得到研究。这类用途广泛的准固体材料可应用于储能设备的不同组件。由于具有理想的物理化学特性,如更宽的潜在操作窗口和与固体电极材料的高粘附性,它们正被研究用作电极、粘合剂、电解质和独立系统。这些材料将液相凝聚成缠结的三维聚合物基体,可承受较高的机械应力(如应变和压缩),也是各种应用领域的理想材料。此外,它们还可以进一步功能化,以满足各种储能系统的特定要求。在这篇综述中,我们总结了 GPE 在储能设备中的不同应用,重点介绍了它们的许多宝贵特性,并强调了它们与传统液态电化学储能系统相比所具有的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional Gel-Based Electrochemical Energy Storage

The development of flexible and wearable electronics has grown in recent years with applications in different fields of industry and science. Consequently, the necessity of functional, flexible, safe, and reliable energy storage devices to meet this demand has increased. Since the classical electrochemical systems face structuration and operational limitations to match the needs of flexible devices, novel approaches have been in the research spotlight: gel polymer electrolytes (GPEs). Combining comparable ionic conductivity with liquid electrolytes with desirable mechanical stability, GPEs have been investigated in various electrochemical applications in sensors, actuators, and energy storage. This versatile class of quasi-solid material finds applications in the different components of energy storage devices. They are being investigated as electrodes, binders, electrolytes, and stand-alone systems due to desirable physical-chemical characteristics such as a wider potential operational window and high adhesion to solid electrode materials. Coalescing a liquid phase occluded into an entangled 3D polymeric matrix, these materials withstand elevated mechanical stress such as strain and compression, and they are also interesting materials for various applications. Moreover, they allow further functionalization to match the specific requirements of various energy storage systems. In this review, we summarize different applications of GPEs in energy storage devices, highlighting many valuable properties and emphasizing their enhancements compared to classical liquid electrochemical energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Lanthanide Contraction Eliminates Disorder while Holding Robust Second Harmonic Generation in a Series of Polyiodates Unveiling Cellular Secrets: Illuminating Carbon Dot Lighthouses for Improved Mitochondrial Exploration Decoupling Interlayer Spacing and Cation Dipole on Exciton Binding Energy in Layered Halide Perovskites New Mn and V-rich Phosphate Fluoride Obtained by Topochemical Reaction for Na-ion Batteries Positive Electrode Br-Induced Suppression of Low-Temperature Phase Transitions in Mixed-Cation Mixed-Halide Perovskites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1