安神补血汤通过抑制 p38 MAPK/c-FOS/EGR1 通路,抑制梗死后炎症和心肌重塑。

IF 2.9 4区 生物学 Q3 CELL BIOLOGY Journal of Molecular Histology Pub Date : 2024-08-01 Epub Date: 2024-06-14 DOI:10.1007/s10735-024-10214-4
Jianfeng Wang, Xiaolei Ye, Yanqin Wang
{"title":"安神补血汤通过抑制 p38 MAPK/c-FOS/EGR1 通路,抑制梗死后炎症和心肌重塑。","authors":"Jianfeng Wang, Xiaolei Ye, Yanqin Wang","doi":"10.1007/s10735-024-10214-4","DOIUrl":null,"url":null,"abstract":"<p><p>Anshen Shumai Decoction (ASSMD) is traditionally employed to manage coronary artery disease arrhythmias. Its protective efficacy against myocardial infarction remains to be elucidated. This investigation employed a rat model of myocardial infarction, achieved through the ligation of the left anterior descending (LAD) coronary artery, followed by a 28-day administration of ASSMD. The study observed the decoction's mitigative impact on myocardial injury, with gene regulation effects discerned through transcriptomic analysis. Furthermore, ASSMD's influence on cardiomyocyte apoptosis and fibrotic protein secretion was assessed using an embryonic rat cardiomyocyte cell line (H9c2) under hypoxic conditions and rat cardiac fibroblasts subjected to normoxic culture conditions with TGF-β. A functional rescue assay involving overexpression of FOS and Early Growth Response Factor 1 (EGR1), combined with inhibition of the p38 Mitogen-activated Protein Kinase (MAPK) pathway, was conducted. Results indicated that ASSMD significantly curtailed cardiomyocyte apoptosis and myocardial fibrosis in infarcted rats, primarily by downregulating FOS and EGR1 gene expression and inhibiting the upstream p38 MAPK pathway. These actions of ASSMD culminated in reduced expression of pro-apoptotic, collagen, and fibrosis-associated proteins, conferring myocardial protection and anti-fibrotic effects on cardiac fibroblasts.</p>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anshen Shumai Decoction inhibits post-infarction inflammation and myocardial remodeling through suppression of the p38 MAPK/c-FOS/EGR1 pathway.\",\"authors\":\"Jianfeng Wang, Xiaolei Ye, Yanqin Wang\",\"doi\":\"10.1007/s10735-024-10214-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anshen Shumai Decoction (ASSMD) is traditionally employed to manage coronary artery disease arrhythmias. Its protective efficacy against myocardial infarction remains to be elucidated. This investigation employed a rat model of myocardial infarction, achieved through the ligation of the left anterior descending (LAD) coronary artery, followed by a 28-day administration of ASSMD. The study observed the decoction's mitigative impact on myocardial injury, with gene regulation effects discerned through transcriptomic analysis. Furthermore, ASSMD's influence on cardiomyocyte apoptosis and fibrotic protein secretion was assessed using an embryonic rat cardiomyocyte cell line (H9c2) under hypoxic conditions and rat cardiac fibroblasts subjected to normoxic culture conditions with TGF-β. A functional rescue assay involving overexpression of FOS and Early Growth Response Factor 1 (EGR1), combined with inhibition of the p38 Mitogen-activated Protein Kinase (MAPK) pathway, was conducted. Results indicated that ASSMD significantly curtailed cardiomyocyte apoptosis and myocardial fibrosis in infarcted rats, primarily by downregulating FOS and EGR1 gene expression and inhibiting the upstream p38 MAPK pathway. These actions of ASSMD culminated in reduced expression of pro-apoptotic, collagen, and fibrosis-associated proteins, conferring myocardial protection and anti-fibrotic effects on cardiac fibroblasts.</p>\",\"PeriodicalId\":650,\"journal\":{\"name\":\"Journal of Molecular Histology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Histology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10735-024-10214-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10735-024-10214-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

安神补血汤(ASSMD)传统上用于治疗冠心病心律失常。其对心肌梗死的保护功效仍有待阐明。本研究采用大鼠心肌梗死模型,通过结扎左前降支(LAD)冠状动脉,然后服用 ASSMD 28 天。该研究观察了煎剂对心肌损伤的缓解作用,并通过转录组分析发现了基因调控效应。此外,研究人员还使用缺氧条件下的胚胎大鼠心肌细胞系(H9c2)和在正常缺氧条件下使用 TGF-β 培养的大鼠心脏成纤维细胞,评估了 ASSMD 对心肌细胞凋亡和纤维化蛋白分泌的影响。在过表达 FOS 和早期生长应答因子 1 (EGR1) 并抑制 p38 丝裂原活化蛋白激酶 (MAPK) 通路的情况下,进行了一项功能拯救试验。结果表明,ASSMD 主要通过下调 FOS 和 EGR1 基因表达以及抑制上游 p38 MAPK 通路,明显减少了梗死大鼠的心肌细胞凋亡和心肌纤维化。ASSMD 的这些作用最终导致促凋亡蛋白、胶原蛋白和纤维化相关蛋白的表达减少,从而为心肌提供保护,并对心脏成纤维细胞产生抗纤维化作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anshen Shumai Decoction inhibits post-infarction inflammation and myocardial remodeling through suppression of the p38 MAPK/c-FOS/EGR1 pathway.

Anshen Shumai Decoction (ASSMD) is traditionally employed to manage coronary artery disease arrhythmias. Its protective efficacy against myocardial infarction remains to be elucidated. This investigation employed a rat model of myocardial infarction, achieved through the ligation of the left anterior descending (LAD) coronary artery, followed by a 28-day administration of ASSMD. The study observed the decoction's mitigative impact on myocardial injury, with gene regulation effects discerned through transcriptomic analysis. Furthermore, ASSMD's influence on cardiomyocyte apoptosis and fibrotic protein secretion was assessed using an embryonic rat cardiomyocyte cell line (H9c2) under hypoxic conditions and rat cardiac fibroblasts subjected to normoxic culture conditions with TGF-β. A functional rescue assay involving overexpression of FOS and Early Growth Response Factor 1 (EGR1), combined with inhibition of the p38 Mitogen-activated Protein Kinase (MAPK) pathway, was conducted. Results indicated that ASSMD significantly curtailed cardiomyocyte apoptosis and myocardial fibrosis in infarcted rats, primarily by downregulating FOS and EGR1 gene expression and inhibiting the upstream p38 MAPK pathway. These actions of ASSMD culminated in reduced expression of pro-apoptotic, collagen, and fibrosis-associated proteins, conferring myocardial protection and anti-fibrotic effects on cardiac fibroblasts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Histology
Journal of Molecular Histology 生物-细胞生物学
CiteScore
5.90
自引率
0.00%
发文量
68
审稿时长
1 months
期刊介绍: The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes. Major research themes of particular interest include: - Cell-Cell and Cell-Matrix Interactions; - Connective Tissues; - Development and Disease; - Neuroscience. Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance. The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.
期刊最新文献
Effects of Platycodon grandiflorus on doxorubicin resistance and epithelial-mesenchymal transition of breast cancer cells via the p38 mitogen-activated protein kinase pathway. Roles of epidural block in combination with general anesthesia in stress response and immune function of patients after surgery for cervical cancer. FAM83H regulated by glis3 promotes triple-negative breast cancer tumorigenesis and activates the NF-κB signaling pathway. Correction: Dendrobine alleviates oleic acid-induced lipid accumulation by inhibiting FOS/METTL14 pathway. Effects of diazinon on the ovarian tissue of rats: a histochemical and ultrastructural study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1