Jie Yang, Miao Chen, Fangyuan Wu, Jingjing Zuo, Huixiang Ma
{"title":"环孢素 A/Lifitegrast 结膜下缓释药物膜治疗干眼症的初步研究。","authors":"Jie Yang, Miao Chen, Fangyuan Wu, Jingjing Zuo, Huixiang Ma","doi":"10.1186/s40662-024-00390-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dry eyes can cause discomfort. To treat dry eye disease, cyclosporine A (CsA) and Lifitegrast are two eye drugs approved by the U.S. Food and Drug Administration (FDA). However, frequent use of eye drops can be challenging and lead to poor compliance, especially in elderly patients. Therefore, this study aimed to develop a drug sustained-release vector and explore its therapeutic effect in animal models of dry eye.</p><p><strong>Methods: </strong>Firstly, drug membranes loaded with both CsA and Lifitegrast using a carrier called poly(lactate-co-ε-caprolactone) (P(LLA-CL)) were prepared and evaluated for their physicochemical properties, release behavior in vitro, and safety in vivo. Next, a rabbit dry eye model using a 0.1% benzalkonium chloride (BAC) solution was developed and treated by drug-loaded micro membranes. We observed and recorded conjunctival hyperemia, corneal staining, corneal edema, corneal neovascularization, conjunctival goblet cells and hematoxylin and eosin (H&E) staining. Finally, we detected the MUC5AC and MMP-9 by immunofluorescence staining and enzyme-linked immunosorbent assay (ELISA).</p><p><strong>Results: </strong>The composite film released both CsA and Lifitegrast for at least one month. Compared to the blank membrane group, conjunctival hyperemia, corneal fluorescein staining, corneal edema, corneal neovascularization and conjunctival goblet cells recovered faster in the drug membrane group, and the difference was statistically significant. At the molecular level, the drug membrane group showed an increase in mucin density and a significant anti-inflammatory effect.</p><p><strong>Conclusions: </strong>The implantation of CsA/Lifitegrast loaded P(LLA-CL) membrane under the subconjunctival of the rabbit eye is safe. The study suggests that this subconjunctival administration could be developed into a minimally invasive delivery system to help patients with dry eye disease who require multiple daily eyedrops but have poor compliance.</p>","PeriodicalId":12194,"journal":{"name":"Eye and Vision","volume":"11 1","pages":"22"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170774/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preliminary study of cyclosporine A/Lifitegrast subconjunctival sustained-release drug membrane in the treatment of dry eyes.\",\"authors\":\"Jie Yang, Miao Chen, Fangyuan Wu, Jingjing Zuo, Huixiang Ma\",\"doi\":\"10.1186/s40662-024-00390-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Dry eyes can cause discomfort. To treat dry eye disease, cyclosporine A (CsA) and Lifitegrast are two eye drugs approved by the U.S. Food and Drug Administration (FDA). However, frequent use of eye drops can be challenging and lead to poor compliance, especially in elderly patients. Therefore, this study aimed to develop a drug sustained-release vector and explore its therapeutic effect in animal models of dry eye.</p><p><strong>Methods: </strong>Firstly, drug membranes loaded with both CsA and Lifitegrast using a carrier called poly(lactate-co-ε-caprolactone) (P(LLA-CL)) were prepared and evaluated for their physicochemical properties, release behavior in vitro, and safety in vivo. Next, a rabbit dry eye model using a 0.1% benzalkonium chloride (BAC) solution was developed and treated by drug-loaded micro membranes. We observed and recorded conjunctival hyperemia, corneal staining, corneal edema, corneal neovascularization, conjunctival goblet cells and hematoxylin and eosin (H&E) staining. Finally, we detected the MUC5AC and MMP-9 by immunofluorescence staining and enzyme-linked immunosorbent assay (ELISA).</p><p><strong>Results: </strong>The composite film released both CsA and Lifitegrast for at least one month. Compared to the blank membrane group, conjunctival hyperemia, corneal fluorescein staining, corneal edema, corneal neovascularization and conjunctival goblet cells recovered faster in the drug membrane group, and the difference was statistically significant. At the molecular level, the drug membrane group showed an increase in mucin density and a significant anti-inflammatory effect.</p><p><strong>Conclusions: </strong>The implantation of CsA/Lifitegrast loaded P(LLA-CL) membrane under the subconjunctival of the rabbit eye is safe. The study suggests that this subconjunctival administration could be developed into a minimally invasive delivery system to help patients with dry eye disease who require multiple daily eyedrops but have poor compliance.</p>\",\"PeriodicalId\":12194,\"journal\":{\"name\":\"Eye and Vision\",\"volume\":\"11 1\",\"pages\":\"22\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170774/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eye and Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40662-024-00390-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eye and Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40662-024-00390-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Preliminary study of cyclosporine A/Lifitegrast subconjunctival sustained-release drug membrane in the treatment of dry eyes.
Background: Dry eyes can cause discomfort. To treat dry eye disease, cyclosporine A (CsA) and Lifitegrast are two eye drugs approved by the U.S. Food and Drug Administration (FDA). However, frequent use of eye drops can be challenging and lead to poor compliance, especially in elderly patients. Therefore, this study aimed to develop a drug sustained-release vector and explore its therapeutic effect in animal models of dry eye.
Methods: Firstly, drug membranes loaded with both CsA and Lifitegrast using a carrier called poly(lactate-co-ε-caprolactone) (P(LLA-CL)) were prepared and evaluated for their physicochemical properties, release behavior in vitro, and safety in vivo. Next, a rabbit dry eye model using a 0.1% benzalkonium chloride (BAC) solution was developed and treated by drug-loaded micro membranes. We observed and recorded conjunctival hyperemia, corneal staining, corneal edema, corneal neovascularization, conjunctival goblet cells and hematoxylin and eosin (H&E) staining. Finally, we detected the MUC5AC and MMP-9 by immunofluorescence staining and enzyme-linked immunosorbent assay (ELISA).
Results: The composite film released both CsA and Lifitegrast for at least one month. Compared to the blank membrane group, conjunctival hyperemia, corneal fluorescein staining, corneal edema, corneal neovascularization and conjunctival goblet cells recovered faster in the drug membrane group, and the difference was statistically significant. At the molecular level, the drug membrane group showed an increase in mucin density and a significant anti-inflammatory effect.
Conclusions: The implantation of CsA/Lifitegrast loaded P(LLA-CL) membrane under the subconjunctival of the rabbit eye is safe. The study suggests that this subconjunctival administration could be developed into a minimally invasive delivery system to help patients with dry eye disease who require multiple daily eyedrops but have poor compliance.
期刊介绍:
Eye and Vision is an open access, peer-reviewed journal for ophthalmologists and visual science specialists. It welcomes research articles, reviews, methodologies, commentaries, case reports, perspectives and short reports encompassing all aspects of eye and vision. Topics of interest include but are not limited to: current developments of theoretical, experimental and clinical investigations in ophthalmology, optometry and vision science which focus on novel and high-impact findings on central issues pertaining to biology, pathophysiology and etiology of eye diseases as well as advances in diagnostic techniques, surgical treatment, instrument updates, the latest drug findings, results of clinical trials and research findings. It aims to provide ophthalmologists and visual science specialists with the latest developments in theoretical, experimental and clinical investigations in eye and vision.