Vitória Piai, Robert Oostenveld, Jan Mathijs Schoffelen, Maria Carla Piastra
{"title":"充满 CSF 的空腔对头皮脑电图的影响及其意义。","authors":"Vitória Piai, Robert Oostenveld, Jan Mathijs Schoffelen, Maria Carla Piastra","doi":"10.1111/psyp.14624","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have found electroencephalogram (EEG) amplitude and scalp topography differences between neurotypical and neurological/neurosurgical groups, being interpreted at the cognitive level. However, these comparisons are invariably accompanied by anatomical changes. Critical to EEG are the so-called volume currents, which are affected by the spatial distribution of the different tissues in the head. We investigated the effect of cerebrospinal fluid (CSF)-filled cavities on simulated EEG scalp data. We simulated EEG scalp potentials for known sources using different volume conduction models: a reference model (i.e., unlesioned brain) and models with realistic CSF-filled cavities gradually increasing in size. We used this approach for a single source close or far from the CSF-lesion cavity, and for a scenario with a distributed configuration of sources (i.e., a \"cognitive event-related potential effect\"). The magnitude and topography errors between the reference and lesion models were quantified. For the single-source simulation close to the lesion, the CSF-filled lesion modulated signal amplitude with more than 17% magnitude error and topography with more than 9% topographical error. Negligible modulation was found for the single source far from the lesion. For the multisource simulations of the cognitive effect, the CSF-filled lesion modulated signal amplitude with more than 6% magnitude error and topography with more than 16% topography error in a nonmonotonic fashion. In conclusion, the impact of a CSF-filled cavity cannot be neglected for scalp-level EEG data. Especially when group-level comparisons are made, any scalp-level attenuated, aberrant, or absent effects are difficult to interpret without considering the confounding effect of CSF.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of CSF-filled cavities on scalp EEG and its implications.\",\"authors\":\"Vitória Piai, Robert Oostenveld, Jan Mathijs Schoffelen, Maria Carla Piastra\",\"doi\":\"10.1111/psyp.14624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous studies have found electroencephalogram (EEG) amplitude and scalp topography differences between neurotypical and neurological/neurosurgical groups, being interpreted at the cognitive level. However, these comparisons are invariably accompanied by anatomical changes. Critical to EEG are the so-called volume currents, which are affected by the spatial distribution of the different tissues in the head. We investigated the effect of cerebrospinal fluid (CSF)-filled cavities on simulated EEG scalp data. We simulated EEG scalp potentials for known sources using different volume conduction models: a reference model (i.e., unlesioned brain) and models with realistic CSF-filled cavities gradually increasing in size. We used this approach for a single source close or far from the CSF-lesion cavity, and for a scenario with a distributed configuration of sources (i.e., a \\\"cognitive event-related potential effect\\\"). The magnitude and topography errors between the reference and lesion models were quantified. For the single-source simulation close to the lesion, the CSF-filled lesion modulated signal amplitude with more than 17% magnitude error and topography with more than 9% topographical error. Negligible modulation was found for the single source far from the lesion. For the multisource simulations of the cognitive effect, the CSF-filled lesion modulated signal amplitude with more than 6% magnitude error and topography with more than 16% topography error in a nonmonotonic fashion. In conclusion, the impact of a CSF-filled cavity cannot be neglected for scalp-level EEG data. Especially when group-level comparisons are made, any scalp-level attenuated, aberrant, or absent effects are difficult to interpret without considering the confounding effect of CSF.</p>\",\"PeriodicalId\":20913,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.14624\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14624","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The impact of CSF-filled cavities on scalp EEG and its implications.
Previous studies have found electroencephalogram (EEG) amplitude and scalp topography differences between neurotypical and neurological/neurosurgical groups, being interpreted at the cognitive level. However, these comparisons are invariably accompanied by anatomical changes. Critical to EEG are the so-called volume currents, which are affected by the spatial distribution of the different tissues in the head. We investigated the effect of cerebrospinal fluid (CSF)-filled cavities on simulated EEG scalp data. We simulated EEG scalp potentials for known sources using different volume conduction models: a reference model (i.e., unlesioned brain) and models with realistic CSF-filled cavities gradually increasing in size. We used this approach for a single source close or far from the CSF-lesion cavity, and for a scenario with a distributed configuration of sources (i.e., a "cognitive event-related potential effect"). The magnitude and topography errors between the reference and lesion models were quantified. For the single-source simulation close to the lesion, the CSF-filled lesion modulated signal amplitude with more than 17% magnitude error and topography with more than 9% topographical error. Negligible modulation was found for the single source far from the lesion. For the multisource simulations of the cognitive effect, the CSF-filled lesion modulated signal amplitude with more than 6% magnitude error and topography with more than 16% topography error in a nonmonotonic fashion. In conclusion, the impact of a CSF-filled cavity cannot be neglected for scalp-level EEG data. Especially when group-level comparisons are made, any scalp-level attenuated, aberrant, or absent effects are difficult to interpret without considering the confounding effect of CSF.
期刊介绍:
Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.