充满 CSF 的空腔对头皮脑电图的影响及其意义。

IF 2.9 2区 心理学 Q2 NEUROSCIENCES Psychophysiology Pub Date : 2024-10-01 Epub Date: 2024-06-14 DOI:10.1111/psyp.14624
Vitória Piai, Robert Oostenveld, Jan Mathijs Schoffelen, Maria Carla Piastra
{"title":"充满 CSF 的空腔对头皮脑电图的影响及其意义。","authors":"Vitória Piai, Robert Oostenveld, Jan Mathijs Schoffelen, Maria Carla Piastra","doi":"10.1111/psyp.14624","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have found electroencephalogram (EEG) amplitude and scalp topography differences between neurotypical and neurological/neurosurgical groups, being interpreted at the cognitive level. However, these comparisons are invariably accompanied by anatomical changes. Critical to EEG are the so-called volume currents, which are affected by the spatial distribution of the different tissues in the head. We investigated the effect of cerebrospinal fluid (CSF)-filled cavities on simulated EEG scalp data. We simulated EEG scalp potentials for known sources using different volume conduction models: a reference model (i.e., unlesioned brain) and models with realistic CSF-filled cavities gradually increasing in size. We used this approach for a single source close or far from the CSF-lesion cavity, and for a scenario with a distributed configuration of sources (i.e., a \"cognitive event-related potential effect\"). The magnitude and topography errors between the reference and lesion models were quantified. For the single-source simulation close to the lesion, the CSF-filled lesion modulated signal amplitude with more than 17% magnitude error and topography with more than 9% topographical error. Negligible modulation was found for the single source far from the lesion. For the multisource simulations of the cognitive effect, the CSF-filled lesion modulated signal amplitude with more than 6% magnitude error and topography with more than 16% topography error in a nonmonotonic fashion. In conclusion, the impact of a CSF-filled cavity cannot be neglected for scalp-level EEG data. Especially when group-level comparisons are made, any scalp-level attenuated, aberrant, or absent effects are difficult to interpret without considering the confounding effect of CSF.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of CSF-filled cavities on scalp EEG and its implications.\",\"authors\":\"Vitória Piai, Robert Oostenveld, Jan Mathijs Schoffelen, Maria Carla Piastra\",\"doi\":\"10.1111/psyp.14624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous studies have found electroencephalogram (EEG) amplitude and scalp topography differences between neurotypical and neurological/neurosurgical groups, being interpreted at the cognitive level. However, these comparisons are invariably accompanied by anatomical changes. Critical to EEG are the so-called volume currents, which are affected by the spatial distribution of the different tissues in the head. We investigated the effect of cerebrospinal fluid (CSF)-filled cavities on simulated EEG scalp data. We simulated EEG scalp potentials for known sources using different volume conduction models: a reference model (i.e., unlesioned brain) and models with realistic CSF-filled cavities gradually increasing in size. We used this approach for a single source close or far from the CSF-lesion cavity, and for a scenario with a distributed configuration of sources (i.e., a \\\"cognitive event-related potential effect\\\"). The magnitude and topography errors between the reference and lesion models were quantified. For the single-source simulation close to the lesion, the CSF-filled lesion modulated signal amplitude with more than 17% magnitude error and topography with more than 9% topographical error. Negligible modulation was found for the single source far from the lesion. For the multisource simulations of the cognitive effect, the CSF-filled lesion modulated signal amplitude with more than 6% magnitude error and topography with more than 16% topography error in a nonmonotonic fashion. In conclusion, the impact of a CSF-filled cavity cannot be neglected for scalp-level EEG data. Especially when group-level comparisons are made, any scalp-level attenuated, aberrant, or absent effects are difficult to interpret without considering the confounding effect of CSF.</p>\",\"PeriodicalId\":20913,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.14624\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14624","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

以往的研究发现,神经畸形组和神经系统/神经外科组之间的脑电图(EEG)振幅和头皮地形图存在差异,这些差异可从认知层面进行解释。然而,这些比较无一例外地伴随着解剖学上的变化。对脑电图至关重要的是所谓的容积电流,它受到头部不同组织空间分布的影响。我们研究了充满脑脊液(CSF)的空腔对模拟脑电图头皮数据的影响。我们使用不同的容积传导模型模拟了已知信号源的脑电图头皮电位:参考模型(即无缺损大脑)和具有逐渐增大的现实脑脊液填充腔的模型。我们将这种方法用于靠近或远离 CSF 病变腔的单个信号源,以及信号源分布式配置(即 "认知事件相关电位效应")的情况。对参考模型和病变模型之间的误差大小和地形误差进行了量化。在靠近病灶的单源模拟中,充满 CSF 的病灶对信号幅度的调制误差超过 17%,对地形的调制误差超过 9%。远离病灶的单信号源对信号的调制微乎其微。在认知效应的多源模拟中,充满 CSF 的病灶以非单调的方式调节信号幅度,幅度误差超过 6%,地形误差超过 16%。总之,充满 CSF 的空腔对头皮级脑电图数据的影响不容忽视。特别是在进行组级比较时,如果不考虑 CSF 的混杂效应,任何头皮级衰减、异常或缺失效应都很难解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The impact of CSF-filled cavities on scalp EEG and its implications.

Previous studies have found electroencephalogram (EEG) amplitude and scalp topography differences between neurotypical and neurological/neurosurgical groups, being interpreted at the cognitive level. However, these comparisons are invariably accompanied by anatomical changes. Critical to EEG are the so-called volume currents, which are affected by the spatial distribution of the different tissues in the head. We investigated the effect of cerebrospinal fluid (CSF)-filled cavities on simulated EEG scalp data. We simulated EEG scalp potentials for known sources using different volume conduction models: a reference model (i.e., unlesioned brain) and models with realistic CSF-filled cavities gradually increasing in size. We used this approach for a single source close or far from the CSF-lesion cavity, and for a scenario with a distributed configuration of sources (i.e., a "cognitive event-related potential effect"). The magnitude and topography errors between the reference and lesion models were quantified. For the single-source simulation close to the lesion, the CSF-filled lesion modulated signal amplitude with more than 17% magnitude error and topography with more than 9% topographical error. Negligible modulation was found for the single source far from the lesion. For the multisource simulations of the cognitive effect, the CSF-filled lesion modulated signal amplitude with more than 6% magnitude error and topography with more than 16% topography error in a nonmonotonic fashion. In conclusion, the impact of a CSF-filled cavity cannot be neglected for scalp-level EEG data. Especially when group-level comparisons are made, any scalp-level attenuated, aberrant, or absent effects are difficult to interpret without considering the confounding effect of CSF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychophysiology
Psychophysiology 医学-神经科学
CiteScore
6.80
自引率
8.10%
发文量
225
审稿时长
2 months
期刊介绍: Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.
期刊最新文献
Patterns of adaptation to stress cardiovascular responses in smokers during ad libitum smoking and withdrawal. The capacity limitations of multiple-template visual search during task preparation and target selection. The immediate and lasting effects of imagery rescripting and their associations with imagery tendency in young adults with childhood maltreatment history: An ERP study. Cortical and subcortical brain networks predict prevailing heart rate. Adversity and error-monitoring: Effects of emotional context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1