Lyle D. Burgoon , Felix M. Kluxen , Anja Hüser , Markus Frericks
{"title":"数据库造就毒药:QSAR 模型中数据集的选择如何影响对更高级别终点的毒物预测。","authors":"Lyle D. Burgoon , Felix M. Kluxen , Anja Hüser , Markus Frericks","doi":"10.1016/j.yrtph.2024.105663","DOIUrl":null,"url":null,"abstract":"<div><p>As the United States and the European Union continue their steady march towards the acceptance of new approach methodologies (NAMs), we need to ensure that the available tools are fit for purpose. Critics will be well-positioned to caution against NAMs acceptance and adoption if the tools turn out to be inadequate. In this paper, we focus on Quantitative Structure Activity-Relationship (QSAR) models and highlight how the training database affects quality and performance of these models. Our analysis goes to the point of asking, “are the endpoints extracted from the experimental studies in the database trustworthy, or are they false negatives/positives themselves?” We also discuss the impacts of chemistry on QSAR models, including issues with 2-D structure analyses when dealing with isomers, metabolism, and toxicokinetics. We close our analysis with a discussion of challenges associated with translational toxicology, specifically the lack of adverse outcome pathways/adverse outcome pathway networks (AOPs/AOPNs) for many higher tier endpoints. We recognize that it takes a collaborate effort to build better and higher quality QSAR models especially for higher tier toxicological endpoints. Hence, it is critical to bring toxicologists, statisticians, and machine learning specialists together to discuss and solve these challenges to get relevant predictions.</p></div>","PeriodicalId":20852,"journal":{"name":"Regulatory Toxicology and Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0273230024001041/pdfft?md5=e00f77e13812a68ab0ced4960d4e80ae&pid=1-s2.0-S0273230024001041-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The database makes the poison: How the selection of datasets in QSAR models impacts toxicant prediction of higher tier endpoints\",\"authors\":\"Lyle D. Burgoon , Felix M. Kluxen , Anja Hüser , Markus Frericks\",\"doi\":\"10.1016/j.yrtph.2024.105663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the United States and the European Union continue their steady march towards the acceptance of new approach methodologies (NAMs), we need to ensure that the available tools are fit for purpose. Critics will be well-positioned to caution against NAMs acceptance and adoption if the tools turn out to be inadequate. In this paper, we focus on Quantitative Structure Activity-Relationship (QSAR) models and highlight how the training database affects quality and performance of these models. Our analysis goes to the point of asking, “are the endpoints extracted from the experimental studies in the database trustworthy, or are they false negatives/positives themselves?” We also discuss the impacts of chemistry on QSAR models, including issues with 2-D structure analyses when dealing with isomers, metabolism, and toxicokinetics. We close our analysis with a discussion of challenges associated with translational toxicology, specifically the lack of adverse outcome pathways/adverse outcome pathway networks (AOPs/AOPNs) for many higher tier endpoints. We recognize that it takes a collaborate effort to build better and higher quality QSAR models especially for higher tier toxicological endpoints. Hence, it is critical to bring toxicologists, statisticians, and machine learning specialists together to discuss and solve these challenges to get relevant predictions.</p></div>\",\"PeriodicalId\":20852,\"journal\":{\"name\":\"Regulatory Toxicology and Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0273230024001041/pdfft?md5=e00f77e13812a68ab0ced4960d4e80ae&pid=1-s2.0-S0273230024001041-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regulatory Toxicology and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273230024001041\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regulatory Toxicology and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273230024001041","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
The database makes the poison: How the selection of datasets in QSAR models impacts toxicant prediction of higher tier endpoints
As the United States and the European Union continue their steady march towards the acceptance of new approach methodologies (NAMs), we need to ensure that the available tools are fit for purpose. Critics will be well-positioned to caution against NAMs acceptance and adoption if the tools turn out to be inadequate. In this paper, we focus on Quantitative Structure Activity-Relationship (QSAR) models and highlight how the training database affects quality and performance of these models. Our analysis goes to the point of asking, “are the endpoints extracted from the experimental studies in the database trustworthy, or are they false negatives/positives themselves?” We also discuss the impacts of chemistry on QSAR models, including issues with 2-D structure analyses when dealing with isomers, metabolism, and toxicokinetics. We close our analysis with a discussion of challenges associated with translational toxicology, specifically the lack of adverse outcome pathways/adverse outcome pathway networks (AOPs/AOPNs) for many higher tier endpoints. We recognize that it takes a collaborate effort to build better and higher quality QSAR models especially for higher tier toxicological endpoints. Hence, it is critical to bring toxicologists, statisticians, and machine learning specialists together to discuss and solve these challenges to get relevant predictions.
期刊介绍:
Regulatory Toxicology and Pharmacology publishes peer reviewed articles that involve the generation, evaluation, and interpretation of experimental animal and human data that are of direct importance and relevance for regulatory authorities with respect to toxicological and pharmacological regulations in society. All peer-reviewed articles that are published should be devoted to improve the protection of human health and environment. Reviews and discussions are welcomed that address legal and/or regulatory decisions with respect to risk assessment and management of toxicological and pharmacological compounds on a scientific basis. It addresses an international readership of scientists, risk assessors and managers, and other professionals active in the field of human and environmental health.
Types of peer-reviewed articles published:
-Original research articles of relevance for regulatory aspects covering aspects including, but not limited to:
1.Factors influencing human sensitivity
2.Exposure science related to risk assessment
3.Alternative toxicological test methods
4.Frameworks for evaluation and integration of data in regulatory evaluations
5.Harmonization across regulatory agencies
6.Read-across methods and evaluations
-Contemporary Reviews on policy related Research issues
-Letters to the Editor
-Guest Editorials (by Invitation)