Nataliya Teteneva, Ananda Sanches-Medeiros, Victor Sourjik
{"title":"对控制大肠杆菌在湖水中生长和持久性的基因决定因素进行全基因组筛选。","authors":"Nataliya Teteneva, Ananda Sanches-Medeiros, Victor Sourjik","doi":"10.1093/ismejo/wrae096","DOIUrl":null,"url":null,"abstract":"<p><p>Although enteric bacteria normally reside within the animal intestine, the ability to persist extraintestinally is an essential part of their overall lifestyle, and it might contribute to transmission between hosts. Despite this potential importance, few genetic determinants of extraintestinal growth and survival have been identified, even for the best-studied model, Escherichia coli. In this work, we thus used a genome-wide library of barcoded transposon insertions to systematically identify functional clusters of genes that are crucial for E. coli fitness in lake water. Our results revealed that inactivation of pathways involved in maintaining outer membrane integrity, nucleotide biosynthesis, and chemotaxis negatively affected E. coli growth or survival in this extraintestinal environment. In contrast, inactivation of another group of genes apparently benefited E. coli growth or persistence in filtered lake water, resulting in higher abundance of these mutants. This group included rpoS, which encodes the general stress response sigma factor, as well as genes encoding several other global transcriptional regulators and RNA chaperones, along with several poorly annotated genes. Based on this co-enrichment, we identified these gene products as novel positive regulators of RpoS activity. We further observed that, despite their enhanced growth, E. coli mutants with inactive RpoS had reduced viability in lake water, and they were not enriched in the presence of the autochthonous microbiota. This highlights the duality of the general stress response pathway for E. coli growth outside the host.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188689/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-wide screen of genetic determinants that govern Escherichia coli growth and persistence in lake water.\",\"authors\":\"Nataliya Teteneva, Ananda Sanches-Medeiros, Victor Sourjik\",\"doi\":\"10.1093/ismejo/wrae096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although enteric bacteria normally reside within the animal intestine, the ability to persist extraintestinally is an essential part of their overall lifestyle, and it might contribute to transmission between hosts. Despite this potential importance, few genetic determinants of extraintestinal growth and survival have been identified, even for the best-studied model, Escherichia coli. In this work, we thus used a genome-wide library of barcoded transposon insertions to systematically identify functional clusters of genes that are crucial for E. coli fitness in lake water. Our results revealed that inactivation of pathways involved in maintaining outer membrane integrity, nucleotide biosynthesis, and chemotaxis negatively affected E. coli growth or survival in this extraintestinal environment. In contrast, inactivation of another group of genes apparently benefited E. coli growth or persistence in filtered lake water, resulting in higher abundance of these mutants. This group included rpoS, which encodes the general stress response sigma factor, as well as genes encoding several other global transcriptional regulators and RNA chaperones, along with several poorly annotated genes. Based on this co-enrichment, we identified these gene products as novel positive regulators of RpoS activity. We further observed that, despite their enhanced growth, E. coli mutants with inactive RpoS had reduced viability in lake water, and they were not enriched in the presence of the autochthonous microbiota. This highlights the duality of the general stress response pathway for E. coli growth outside the host.</p>\",\"PeriodicalId\":50271,\"journal\":{\"name\":\"ISME Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188689/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae096\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae096","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Genome-wide screen of genetic determinants that govern Escherichia coli growth and persistence in lake water.
Although enteric bacteria normally reside within the animal intestine, the ability to persist extraintestinally is an essential part of their overall lifestyle, and it might contribute to transmission between hosts. Despite this potential importance, few genetic determinants of extraintestinal growth and survival have been identified, even for the best-studied model, Escherichia coli. In this work, we thus used a genome-wide library of barcoded transposon insertions to systematically identify functional clusters of genes that are crucial for E. coli fitness in lake water. Our results revealed that inactivation of pathways involved in maintaining outer membrane integrity, nucleotide biosynthesis, and chemotaxis negatively affected E. coli growth or survival in this extraintestinal environment. In contrast, inactivation of another group of genes apparently benefited E. coli growth or persistence in filtered lake water, resulting in higher abundance of these mutants. This group included rpoS, which encodes the general stress response sigma factor, as well as genes encoding several other global transcriptional regulators and RNA chaperones, along with several poorly annotated genes. Based on this co-enrichment, we identified these gene products as novel positive regulators of RpoS activity. We further observed that, despite their enhanced growth, E. coli mutants with inactive RpoS had reduced viability in lake water, and they were not enriched in the presence of the autochthonous microbiota. This highlights the duality of the general stress response pathway for E. coli growth outside the host.
期刊介绍:
The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.