Ckip-1 3'UTR通过激活CaMKK2/AMPK/cTNI通路缓解长期睡眠剥夺诱发的心功能障碍。

IF 6.3 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular biomedicine Pub Date : 2024-06-14 DOI:10.1186/s43556-024-00186-y
Beilei Dong, Rui Xue, Jianwei Li, Shukuan Ling, Wenjuan Xing, Zizhong Liu, Xinxin Yuan, Junjie Pan, Ruikai Du, Xinming Shen, Jingwen Zhang, Youzhi Zhang, Yingxian Li, Guohui Zhong
{"title":"Ckip-1 3'UTR通过激活CaMKK2/AMPK/cTNI通路缓解长期睡眠剥夺诱发的心功能障碍。","authors":"Beilei Dong, Rui Xue, Jianwei Li, Shukuan Ling, Wenjuan Xing, Zizhong Liu, Xinxin Yuan, Junjie Pan, Ruikai Du, Xinming Shen, Jingwen Zhang, Youzhi Zhang, Yingxian Li, Guohui Zhong","doi":"10.1186/s43556-024-00186-y","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep deprivation (SD) has emerged as a critical concern impacting human health, leading to significant damage to the cardiovascular system. However, the underlying mechanisms are still unclear, and the development of targeted drugs is lagging. Here, we used mice to explore the effects of prolonged SD on cardiac structure and function. Echocardiography analysis revealed that cardiac function was significantly decreased in mice after five weeks of SD. Real-time quantitative PCR (RT-q-PCR) and Masson staining analysis showed that cardiac remodeling marker gene Anp (atrial natriuretic peptide) and fibrosis were increased, Elisa assay of serum showed that the levels of creatine kinase (CK), creatine kinase-MB (CK-MB), ANP, brain natriuretic peptide (BNP) and cardiac troponin T (cTn-T) were increased after SD, suggesting that cardiac remodeling and injury occurred. Transcript sequencing analysis indicated that genes involved in the regulation of calcium signaling pathway, dilated cardiomyopathy, and cardiac muscle contraction were changed after SD. Accordingly, Western blotting analysis demonstrated that the cardiac-contraction associated CaMKK2/AMPK/cTNI pathway was inhibited. Since our preliminary research has confirmed the vital role of Casein Kinase-2 -Interacting Protein-1 (CKIP-1, also known as PLEKHO1) in cardiac remodeling regulation. Here, we found the levels of the 3' untranslated region of Ckip-1 (Ckip-1 3'UTR) decreased, while the coding sequence of Ckip-1 (Ckip-1 CDS) remained unchanged after SD. Significantly, adenovirus-mediated overexpression of Ckip-1 3'UTR alleviated SD-induced cardiac dysfunction and remodeling by activating CaMKK2/AMPK/cTNI pathway, which proposed the therapeutic potential of Ckip-1 3'UTR in treating SD-induced heart disease.</p>","PeriodicalId":74218,"journal":{"name":"Molecular biomedicine","volume":"5 1","pages":"23"},"PeriodicalIF":6.3000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176284/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ckip-1 3'UTR alleviates prolonged sleep deprivation induced cardiac dysfunction by activating CaMKK2/AMPK/cTNI pathway.\",\"authors\":\"Beilei Dong, Rui Xue, Jianwei Li, Shukuan Ling, Wenjuan Xing, Zizhong Liu, Xinxin Yuan, Junjie Pan, Ruikai Du, Xinming Shen, Jingwen Zhang, Youzhi Zhang, Yingxian Li, Guohui Zhong\",\"doi\":\"10.1186/s43556-024-00186-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sleep deprivation (SD) has emerged as a critical concern impacting human health, leading to significant damage to the cardiovascular system. However, the underlying mechanisms are still unclear, and the development of targeted drugs is lagging. Here, we used mice to explore the effects of prolonged SD on cardiac structure and function. Echocardiography analysis revealed that cardiac function was significantly decreased in mice after five weeks of SD. Real-time quantitative PCR (RT-q-PCR) and Masson staining analysis showed that cardiac remodeling marker gene Anp (atrial natriuretic peptide) and fibrosis were increased, Elisa assay of serum showed that the levels of creatine kinase (CK), creatine kinase-MB (CK-MB), ANP, brain natriuretic peptide (BNP) and cardiac troponin T (cTn-T) were increased after SD, suggesting that cardiac remodeling and injury occurred. Transcript sequencing analysis indicated that genes involved in the regulation of calcium signaling pathway, dilated cardiomyopathy, and cardiac muscle contraction were changed after SD. Accordingly, Western blotting analysis demonstrated that the cardiac-contraction associated CaMKK2/AMPK/cTNI pathway was inhibited. Since our preliminary research has confirmed the vital role of Casein Kinase-2 -Interacting Protein-1 (CKIP-1, also known as PLEKHO1) in cardiac remodeling regulation. Here, we found the levels of the 3' untranslated region of Ckip-1 (Ckip-1 3'UTR) decreased, while the coding sequence of Ckip-1 (Ckip-1 CDS) remained unchanged after SD. Significantly, adenovirus-mediated overexpression of Ckip-1 3'UTR alleviated SD-induced cardiac dysfunction and remodeling by activating CaMKK2/AMPK/cTNI pathway, which proposed the therapeutic potential of Ckip-1 3'UTR in treating SD-induced heart disease.</p>\",\"PeriodicalId\":74218,\"journal\":{\"name\":\"Molecular biomedicine\",\"volume\":\"5 1\",\"pages\":\"23\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176284/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43556-024-00186-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43556-024-00186-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

睡眠不足(SD)已成为影响人类健康的一个重要问题,会对心血管系统造成严重损害。然而,其潜在机制尚不清楚,靶向药物的开发也相对滞后。在这里,我们用小鼠来探讨长期SD对心脏结构和功能的影响。超声心动图分析表明,小鼠在SD五周后心脏功能明显下降。实时定量 PCR(RT-q-PCR)和 Masson 染色分析表明,心脏重塑标志基因 Anp(心房利钠肽)和纤维化增加、血清中肌酸激酶(CK)、肌酸激酶-MB(CK-MB)、ANP、脑钠肽(BNP)和心肌肌钙蛋白 T(cTn-T)的水平在 SD 后升高,表明心脏发生了重塑和损伤。转录本测序分析表明,参与钙信号通路调控、扩张型心肌病和心肌收缩的基因在 SD 后发生了变化。相应地,Western 印迹分析表明,与心肌收缩相关的 CaMKK2/AMPK/cTNI 通路受到了抑制。我们的初步研究证实了酪蛋白激酶-2-互作蛋白-1(CKIP-1,又称 PLEKHO1)在心脏重塑调控中的重要作用。在此,我们发现SD后Ckip-1的3'非翻译区(Ckip-1 3'UTR)水平下降,而Ckip-1的编码序列(Ckip-1 CDS)保持不变。值得注意的是,腺病毒介导的Ckip-1 3'UTR过表达通过激活CaMKK2/AMPK/cTNI通路缓解了SD诱导的心功能障碍和重塑,这提出了Ckip-1 3'UTR在治疗SD诱导的心脏病方面的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ckip-1 3'UTR alleviates prolonged sleep deprivation induced cardiac dysfunction by activating CaMKK2/AMPK/cTNI pathway.

Sleep deprivation (SD) has emerged as a critical concern impacting human health, leading to significant damage to the cardiovascular system. However, the underlying mechanisms are still unclear, and the development of targeted drugs is lagging. Here, we used mice to explore the effects of prolonged SD on cardiac structure and function. Echocardiography analysis revealed that cardiac function was significantly decreased in mice after five weeks of SD. Real-time quantitative PCR (RT-q-PCR) and Masson staining analysis showed that cardiac remodeling marker gene Anp (atrial natriuretic peptide) and fibrosis were increased, Elisa assay of serum showed that the levels of creatine kinase (CK), creatine kinase-MB (CK-MB), ANP, brain natriuretic peptide (BNP) and cardiac troponin T (cTn-T) were increased after SD, suggesting that cardiac remodeling and injury occurred. Transcript sequencing analysis indicated that genes involved in the regulation of calcium signaling pathway, dilated cardiomyopathy, and cardiac muscle contraction were changed after SD. Accordingly, Western blotting analysis demonstrated that the cardiac-contraction associated CaMKK2/AMPK/cTNI pathway was inhibited. Since our preliminary research has confirmed the vital role of Casein Kinase-2 -Interacting Protein-1 (CKIP-1, also known as PLEKHO1) in cardiac remodeling regulation. Here, we found the levels of the 3' untranslated region of Ckip-1 (Ckip-1 3'UTR) decreased, while the coding sequence of Ckip-1 (Ckip-1 CDS) remained unchanged after SD. Significantly, adenovirus-mediated overexpression of Ckip-1 3'UTR alleviated SD-induced cardiac dysfunction and remodeling by activating CaMKK2/AMPK/cTNI pathway, which proposed the therapeutic potential of Ckip-1 3'UTR in treating SD-induced heart disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Unveiling the role of Pleckstrin-2 in tumor progression and immune modulation: insights from a comprehensive pan-cancer analysis with focus on lung cancer. XAF1 antagonizes TRIM28 activity through the assembly of a ZNF313-mediated destruction complex to suppress tumor malignancy. Proteogenomics identifies c-Met inhibition as a therapeutic strategy for BAP1-deficient clear cell renal cell carcinoma. Prophylactic and therapeutic vaccine development: advancements and challenges. Cervicovaginal lavages uncover growth factors as key biomarkers for early diagnosis and prognosis of endometrial cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1