Enyu Shi;Jiayi Zhang;Hongyang Du;Bo Ai;Chau Yuen;Dusit Niyato;Khaled B. Letaief;Xuemin Shen
{"title":"面向 6G 的 RIS 辅助无小区大规模 MIMO 系统:基础、系统设计与应用","authors":"Enyu Shi;Jiayi Zhang;Hongyang Du;Bo Ai;Chau Yuen;Dusit Niyato;Khaled B. Letaief;Xuemin Shen","doi":"10.1109/JPROC.2024.3404491","DOIUrl":null,"url":null,"abstract":"An introduction of intelligent interconnectivity for people and things has posed higher demands and more challenges for sixth-generation (6G) networks, such as high spectral efficiency and energy efficiency (EE), ultralow latency, and ultrahigh reliability. Cell-free (CF) massive multiple-input-multiple-output (mMIMO) and reconfigurable intelligent surface (RIS), also called intelligent reflecting surface (IRS), are two promising technologies for coping with these unprecedented demands. Given their distinct capabilities, integrating the two technologies to further enhance wireless network performances has received great research and development attention. In this article, we provide a comprehensive survey of research on RIS-aided CF mMIMO wireless communication systems. We first introduce system models focusing on system architecture and application scenarios, channel models, and communication protocols. Subsequently, we summarize the relevant studies on system operation and resource allocation, providing in-depth analyses and discussions. Following this, we present practical challenges faced by RIS-aided CF mMIMO systems, particularly those introduced by RIS, such as hardware impairments (HIs) and electromagnetic interference (EMI). We summarize the corresponding analyses and solutions to further facilitate the implementation of RIS-aided CF mMIMO systems. Furthermore, we explore an interplay between RIS-aided CF mMIMO and other emerging 6G technologies, such as millimeter wave (mmWave) and terahertz (THz), simultaneous wireless information and power transfer (SWIPT), next-generation multiple access (NGMA), and unmanned aerial vehicle (UAV). Finally, we outline several research directions for future RIS-aided CF mMIMO systems.","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 4","pages":"331-364"},"PeriodicalIF":23.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RIS-Aided Cell-Free Massive MIMO Systems for 6G: Fundamentals, System Design, and Applications\",\"authors\":\"Enyu Shi;Jiayi Zhang;Hongyang Du;Bo Ai;Chau Yuen;Dusit Niyato;Khaled B. Letaief;Xuemin Shen\",\"doi\":\"10.1109/JPROC.2024.3404491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An introduction of intelligent interconnectivity for people and things has posed higher demands and more challenges for sixth-generation (6G) networks, such as high spectral efficiency and energy efficiency (EE), ultralow latency, and ultrahigh reliability. Cell-free (CF) massive multiple-input-multiple-output (mMIMO) and reconfigurable intelligent surface (RIS), also called intelligent reflecting surface (IRS), are two promising technologies for coping with these unprecedented demands. Given their distinct capabilities, integrating the two technologies to further enhance wireless network performances has received great research and development attention. In this article, we provide a comprehensive survey of research on RIS-aided CF mMIMO wireless communication systems. We first introduce system models focusing on system architecture and application scenarios, channel models, and communication protocols. Subsequently, we summarize the relevant studies on system operation and resource allocation, providing in-depth analyses and discussions. Following this, we present practical challenges faced by RIS-aided CF mMIMO systems, particularly those introduced by RIS, such as hardware impairments (HIs) and electromagnetic interference (EMI). We summarize the corresponding analyses and solutions to further facilitate the implementation of RIS-aided CF mMIMO systems. Furthermore, we explore an interplay between RIS-aided CF mMIMO and other emerging 6G technologies, such as millimeter wave (mmWave) and terahertz (THz), simultaneous wireless information and power transfer (SWIPT), next-generation multiple access (NGMA), and unmanned aerial vehicle (UAV). Finally, we outline several research directions for future RIS-aided CF mMIMO systems.\",\"PeriodicalId\":20556,\"journal\":{\"name\":\"Proceedings of the IEEE\",\"volume\":\"112 4\",\"pages\":\"331-364\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10556753/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10556753/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
RIS-Aided Cell-Free Massive MIMO Systems for 6G: Fundamentals, System Design, and Applications
An introduction of intelligent interconnectivity for people and things has posed higher demands and more challenges for sixth-generation (6G) networks, such as high spectral efficiency and energy efficiency (EE), ultralow latency, and ultrahigh reliability. Cell-free (CF) massive multiple-input-multiple-output (mMIMO) and reconfigurable intelligent surface (RIS), also called intelligent reflecting surface (IRS), are two promising technologies for coping with these unprecedented demands. Given their distinct capabilities, integrating the two technologies to further enhance wireless network performances has received great research and development attention. In this article, we provide a comprehensive survey of research on RIS-aided CF mMIMO wireless communication systems. We first introduce system models focusing on system architecture and application scenarios, channel models, and communication protocols. Subsequently, we summarize the relevant studies on system operation and resource allocation, providing in-depth analyses and discussions. Following this, we present practical challenges faced by RIS-aided CF mMIMO systems, particularly those introduced by RIS, such as hardware impairments (HIs) and electromagnetic interference (EMI). We summarize the corresponding analyses and solutions to further facilitate the implementation of RIS-aided CF mMIMO systems. Furthermore, we explore an interplay between RIS-aided CF mMIMO and other emerging 6G technologies, such as millimeter wave (mmWave) and terahertz (THz), simultaneous wireless information and power transfer (SWIPT), next-generation multiple access (NGMA), and unmanned aerial vehicle (UAV). Finally, we outline several research directions for future RIS-aided CF mMIMO systems.
期刊介绍:
Proceedings of the IEEE is the leading journal to provide in-depth review, survey, and tutorial coverage of the technical developments in electronics, electrical and computer engineering, and computer science. Consistently ranked as one of the top journals by Impact Factor, Article Influence Score and more, the journal serves as a trusted resource for engineers around the world.