米诺环素/透明质酸/碳纳米角复合材料的近红外线增强抗菌活性,用于种植体周围炎治疗

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-06-14 DOI:10.1039/D4NR01036A
Daisuke Konishi, Eri Hirata, Yuta Takano, Yukari Maeda, Natsumi Ushijima, Masako Yudasaka and Atsuro Yokoyama
{"title":"米诺环素/透明质酸/碳纳米角复合材料的近红外线增强抗菌活性,用于种植体周围炎治疗","authors":"Daisuke Konishi, Eri Hirata, Yuta Takano, Yukari Maeda, Natsumi Ushijima, Masako Yudasaka and Atsuro Yokoyama","doi":"10.1039/D4NR01036A","DOIUrl":null,"url":null,"abstract":"<p >Dental implant therapy is a reliable treatment for replacing missing teeth. However, as dental implants become more widely used, peri-implantitis increasingly has become a severe complication, making successful treatment more difficult. As a result, the development of effective drug delivery systems (DDSs) and treatments for peri-implantitis are urgently needed. Carbon nanohorns (CNHs) are carbon nanomaterials that have shown promise for use in DDSs and have photothermal effects. The present study exploited the unique properties of CNHs to develop a phototherapy employing a near-infrared (NIR) photoresponsive composite of minocycline, hyaluronan, and CNH (MC/HA/CNH) for peri-implantitis treatments. MC/HA/CNH demonstrated antibacterial effects that were potentiated by NIR-light irradiation, a property that was mediated by photothermal-mediated drug release from HA/CNH. These antibacterial effects persisted even following 48 h of dialysis, a promising indication for the clinical use of this material. We propose that the treatment of peri-implantitis using NIR and MC/HA/CNH, in combination with surgical procedures, might be employed to target relatively deep affected areas in a timely and efficacious manner. We envision that this innovative approach will pave the way for future developments in implant therapy.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-infrared light-boosted antimicrobial activity of minocycline/hyaluronan/carbon nanohorn composite toward peri-implantitis treatments†\",\"authors\":\"Daisuke Konishi, Eri Hirata, Yuta Takano, Yukari Maeda, Natsumi Ushijima, Masako Yudasaka and Atsuro Yokoyama\",\"doi\":\"10.1039/D4NR01036A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dental implant therapy is a reliable treatment for replacing missing teeth. However, as dental implants become more widely used, peri-implantitis increasingly has become a severe complication, making successful treatment more difficult. As a result, the development of effective drug delivery systems (DDSs) and treatments for peri-implantitis are urgently needed. Carbon nanohorns (CNHs) are carbon nanomaterials that have shown promise for use in DDSs and have photothermal effects. The present study exploited the unique properties of CNHs to develop a phototherapy employing a near-infrared (NIR) photoresponsive composite of minocycline, hyaluronan, and CNH (MC/HA/CNH) for peri-implantitis treatments. MC/HA/CNH demonstrated antibacterial effects that were potentiated by NIR-light irradiation, a property that was mediated by photothermal-mediated drug release from HA/CNH. These antibacterial effects persisted even following 48 h of dialysis, a promising indication for the clinical use of this material. We propose that the treatment of peri-implantitis using NIR and MC/HA/CNH, in combination with surgical procedures, might be employed to target relatively deep affected areas in a timely and efficacious manner. We envision that this innovative approach will pave the way for future developments in implant therapy.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01036a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01036a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

种植牙治疗是一种可靠的缺牙修复方法。然而,随着种植牙的广泛应用,种植体周围炎日益成为一种严重的并发症,使成功治疗变得更加困难。因此,开发有效的给药系统(DDS)和治疗种植体周围炎的方法迫在眉睫。碳纳米角(CNHs)是一种碳纳米材料,有望用于 DDSs 并具有光热效应。本研究利用碳纳米管的独特性质开发了一种光疗方法,采用米诺环素、透明质酸和碳纳米管的近红外(NIR)光致发光复合材料(MC/HA/CNH)治疗种植体周围炎。MC/HA/CNH具有抗菌效果,在近红外光照射下抗菌效果更强,这种特性是由HA/CNH的光热介导的药物释放促成的。这些抗菌效果甚至在透析 48 小时后仍能持续,这表明这种材料有望应用于临床。我们建议,使用近红外和 MC/HA/CNH 结合外科手术治疗种植体周围炎,可以及时有效地针对相对较深的受影响区域进行治疗。我们预计,这种创新方法将为种植治疗的未来发展铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near-infrared light-boosted antimicrobial activity of minocycline/hyaluronan/carbon nanohorn composite toward peri-implantitis treatments†

Dental implant therapy is a reliable treatment for replacing missing teeth. However, as dental implants become more widely used, peri-implantitis increasingly has become a severe complication, making successful treatment more difficult. As a result, the development of effective drug delivery systems (DDSs) and treatments for peri-implantitis are urgently needed. Carbon nanohorns (CNHs) are carbon nanomaterials that have shown promise for use in DDSs and have photothermal effects. The present study exploited the unique properties of CNHs to develop a phototherapy employing a near-infrared (NIR) photoresponsive composite of minocycline, hyaluronan, and CNH (MC/HA/CNH) for peri-implantitis treatments. MC/HA/CNH demonstrated antibacterial effects that were potentiated by NIR-light irradiation, a property that was mediated by photothermal-mediated drug release from HA/CNH. These antibacterial effects persisted even following 48 h of dialysis, a promising indication for the clinical use of this material. We propose that the treatment of peri-implantitis using NIR and MC/HA/CNH, in combination with surgical procedures, might be employed to target relatively deep affected areas in a timely and efficacious manner. We envision that this innovative approach will pave the way for future developments in implant therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
CD56-targeted in vivo genetic engineering of natural killer cells mediates immunotherapy for acute myeloid leukemia. High Sensing Performance Hybrid Nanostructure Constructed via Nanoscale Confined Motion of Nanofiber and Nanoplatelet in Flexible Nanocomposite Sensor Nanoscopic visualization of microgel-immobilized cytochrome P450 enzymes and their local activity Metamagnetic transition and meta-stable magnetic state in Co-dopedFe3GaTe2 Perspectives on sustainable and efficient routes of nanoparticle synthesis: an exhaustive review on conventional and microplasma-assisted techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1