用于生物医学关系提取的位置增强句法知识。

IF 4 2区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Biomedical Informatics Pub Date : 2024-06-12 DOI:10.1016/j.jbi.2024.104676
Yan Zhang, Zhihao Yang, Yumeng Yang, Hongfei Lin, Jian Wang
{"title":"用于生物医学关系提取的位置增强句法知识。","authors":"Yan Zhang,&nbsp;Zhihao Yang,&nbsp;Yumeng Yang,&nbsp;Hongfei Lin,&nbsp;Jian Wang","doi":"10.1016/j.jbi.2024.104676","DOIUrl":null,"url":null,"abstract":"<div><p>Biomedical relation extraction has long been considered a challenging task due to the specialization and complexity of biomedical texts. Syntactic knowledge has been widely employed in existing research to enhance relation extraction, providing guidance for the semantic understanding and text representation of models. However, the utilization of syntactic knowledge in most studies is not exhaustive, and there is often a lack of fine-grained noise reduction, leading to confusion in relation classification. In this paper, we propose an attention generator that comprehensively considers both syntactic dependency type information and syntactic position information to distinguish the importance of different dependency connections. Additionally, we integrate positional information, dependency type information, and word representations together to introduce location-enhanced syntactic knowledge for guiding our biomedical relation extraction. Experimental results on three widely used English benchmark datasets in the biomedical domain consistently outperform a range of baseline models, demonstrating that our approach not only makes full use of syntactic knowledge but also effectively reduces the impact of noisy words.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"156 ","pages":"Article 104676"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Location-enhanced syntactic knowledge for biomedical relation extraction\",\"authors\":\"Yan Zhang,&nbsp;Zhihao Yang,&nbsp;Yumeng Yang,&nbsp;Hongfei Lin,&nbsp;Jian Wang\",\"doi\":\"10.1016/j.jbi.2024.104676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biomedical relation extraction has long been considered a challenging task due to the specialization and complexity of biomedical texts. Syntactic knowledge has been widely employed in existing research to enhance relation extraction, providing guidance for the semantic understanding and text representation of models. However, the utilization of syntactic knowledge in most studies is not exhaustive, and there is often a lack of fine-grained noise reduction, leading to confusion in relation classification. In this paper, we propose an attention generator that comprehensively considers both syntactic dependency type information and syntactic position information to distinguish the importance of different dependency connections. Additionally, we integrate positional information, dependency type information, and word representations together to introduce location-enhanced syntactic knowledge for guiding our biomedical relation extraction. Experimental results on three widely used English benchmark datasets in the biomedical domain consistently outperform a range of baseline models, demonstrating that our approach not only makes full use of syntactic knowledge but also effectively reduces the impact of noisy words.</p></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"156 \",\"pages\":\"Article 104676\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046424000947\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424000947","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由于生物医学文本的专业性和复杂性,生物医学关系提取一直被认为是一项具有挑战性的任务。句法知识在现有研究中被广泛用于加强关系提取,为模型的语义理解和文本表示提供指导。然而,大多数研究对句法知识的利用并不全面,而且往往缺乏细粒度降噪,导致关系分类混乱。在本文中,我们提出了一种注意力生成器,它能综合考虑句法依赖类型信息和句法位置信息,以区分不同依赖连接的重要性。此外,我们还将位置信息、依赖类型信息和单词表示整合在一起,引入了位置增强句法知识,用于指导我们的生物医学关系提取。在生物医学领域广泛使用的三个英语基准数据集上的实验结果一致优于一系列基准模型,这表明我们的方法不仅充分利用了句法知识,还有效地降低了噪声词的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Location-enhanced syntactic knowledge for biomedical relation extraction

Biomedical relation extraction has long been considered a challenging task due to the specialization and complexity of biomedical texts. Syntactic knowledge has been widely employed in existing research to enhance relation extraction, providing guidance for the semantic understanding and text representation of models. However, the utilization of syntactic knowledge in most studies is not exhaustive, and there is often a lack of fine-grained noise reduction, leading to confusion in relation classification. In this paper, we propose an attention generator that comprehensively considers both syntactic dependency type information and syntactic position information to distinguish the importance of different dependency connections. Additionally, we integrate positional information, dependency type information, and word representations together to introduce location-enhanced syntactic knowledge for guiding our biomedical relation extraction. Experimental results on three widely used English benchmark datasets in the biomedical domain consistently outperform a range of baseline models, demonstrating that our approach not only makes full use of syntactic knowledge but also effectively reduces the impact of noisy words.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomedical Informatics
Journal of Biomedical Informatics 医学-计算机:跨学科应用
CiteScore
8.90
自引率
6.70%
发文量
243
审稿时长
32 days
期刊介绍: The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.
期刊最新文献
Early multi-cancer detection through deep learning: An anomaly detection approach using Variational Autoencoder. Importance of variables from different time frames for predicting self-harm using health system data Cross-Modal self-supervised vision language pre-training with multiple objectives for medical visual question answering Machine learning approaches for the discovery of clinical pathways from patient data: A systematic review MultiADE: A Multi-domain benchmark for Adverse Drug Event extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1