Jadwiga Meissner, Katarzyna Eysmont, Katarzyna Matylla-Kulińska, Maria M Konarska
{"title":"在剪接的第一步和第二步之间,Cwc2、U6 snRNA 和 Prp8 的相互作用在 Prp16 ATPase 的作用下变得不稳定。","authors":"Jadwiga Meissner, Katarzyna Eysmont, Katarzyna Matylla-Kulińska, Maria M Konarska","doi":"10.1261/rna.079886.123","DOIUrl":null,"url":null,"abstract":"<p><p>The spliceosome performs two consecutive transesterification reactions using one catalytic center, thus requiring its rearrangement between the two catalytic steps of splicing. The Prp16 ATPase facilitates exit from the first-step conformation of the catalytic center by destabilizing some interactions important for catalysis. To better understand rearrangements within the <i>Saccharomyces cerevisiae</i> catalytic center, we characterize factors that modulate the function of Prp16: Cwc2, N-terminal domain of Prp8, and U6-<sub>41</sub>AACAAU<sub>46</sub> region. Alleles of these factors were identified through genetic screens for mutants that correct <i>cs</i> defects of <i>prp16-302</i> alleles. Several of the identified U6, <i>cwc2</i>, and <i>prp8</i> alleles are located in close proximity of each other in cryo-EM structures of the spliceosomal catalytic conformations. Cwc2 and U6 interact with the intron sequences in the first step, but they do not seem to contribute to the stability of the second-step catalytic center. On the other hand, the N-terminal segment of Prp8 not only affects intron positioning for the first step, but it also makes important contacts in the proximity of the active site for both the first and second steps of splicing. By identifying interactions important for the stability of catalytic conformations, our genetic analyses indirectly inform us about features of the transition-state conformation of the spliceosome.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1199-1212"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331412/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of Cwc2, U6 snRNA, and Prp8 interactions destabilized by Prp16 ATPase at the transition between the first and second steps of splicing.\",\"authors\":\"Jadwiga Meissner, Katarzyna Eysmont, Katarzyna Matylla-Kulińska, Maria M Konarska\",\"doi\":\"10.1261/rna.079886.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spliceosome performs two consecutive transesterification reactions using one catalytic center, thus requiring its rearrangement between the two catalytic steps of splicing. The Prp16 ATPase facilitates exit from the first-step conformation of the catalytic center by destabilizing some interactions important for catalysis. To better understand rearrangements within the <i>Saccharomyces cerevisiae</i> catalytic center, we characterize factors that modulate the function of Prp16: Cwc2, N-terminal domain of Prp8, and U6-<sub>41</sub>AACAAU<sub>46</sub> region. Alleles of these factors were identified through genetic screens for mutants that correct <i>cs</i> defects of <i>prp16-302</i> alleles. Several of the identified U6, <i>cwc2</i>, and <i>prp8</i> alleles are located in close proximity of each other in cryo-EM structures of the spliceosomal catalytic conformations. Cwc2 and U6 interact with the intron sequences in the first step, but they do not seem to contribute to the stability of the second-step catalytic center. On the other hand, the N-terminal segment of Prp8 not only affects intron positioning for the first step, but it also makes important contacts in the proximity of the active site for both the first and second steps of splicing. By identifying interactions important for the stability of catalytic conformations, our genetic analyses indirectly inform us about features of the transition-state conformation of the spliceosome.</p>\",\"PeriodicalId\":21401,\"journal\":{\"name\":\"RNA\",\"volume\":\" \",\"pages\":\"1199-1212\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331412/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1261/rna.079886.123\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.079886.123","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
剪接体使用一个催化中心连续进行两个酯化反应,因此需要在剪接的两个催化步骤之间重新排列。Prp16 ATP 酶通过破坏一些对催化很重要的相互作用的稳定性,促进催化中心从第一步构象中退出。为了更好地了解 S. cerevisiae 催化中心内的重排,我们鉴定了调节 Prp16 功能的因子:Cwc2、Prp8 的 N 端结构域和 U6-41AACAAU46 区域。这些因子的等位基因是通过遗传筛选确定的,筛选出的突变体可纠正 prp16-302 等位基因的 cs 缺陷。在剪接体催化构象的低温电子显微镜(cryo-EM)结构中,几种已确定的 U6、cwc2 和 prp8 等位基因相互靠近。Cwc2 和 U6 在第一步中与内含子序列相互作用,但它们似乎并不影响第二步催化中心的稳定性。另一方面,Prp8 的 N 端片段不仅影响第一步的内含子定位,而且还在剪接第一步和第二步的活性位点附近进行重要的接触。通过确定对催化构象的稳定性非常重要的相互作用,我们的遗传分析间接地告诉我们剪接体过渡状态构象的特征。
Characterization of Cwc2, U6 snRNA, and Prp8 interactions destabilized by Prp16 ATPase at the transition between the first and second steps of splicing.
The spliceosome performs two consecutive transesterification reactions using one catalytic center, thus requiring its rearrangement between the two catalytic steps of splicing. The Prp16 ATPase facilitates exit from the first-step conformation of the catalytic center by destabilizing some interactions important for catalysis. To better understand rearrangements within the Saccharomyces cerevisiae catalytic center, we characterize factors that modulate the function of Prp16: Cwc2, N-terminal domain of Prp8, and U6-41AACAAU46 region. Alleles of these factors were identified through genetic screens for mutants that correct cs defects of prp16-302 alleles. Several of the identified U6, cwc2, and prp8 alleles are located in close proximity of each other in cryo-EM structures of the spliceosomal catalytic conformations. Cwc2 and U6 interact with the intron sequences in the first step, but they do not seem to contribute to the stability of the second-step catalytic center. On the other hand, the N-terminal segment of Prp8 not only affects intron positioning for the first step, but it also makes important contacts in the proximity of the active site for both the first and second steps of splicing. By identifying interactions important for the stability of catalytic conformations, our genetic analyses indirectly inform us about features of the transition-state conformation of the spliceosome.
期刊介绍:
RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.