{"title":"便携式姿势控制测量技术:头部位置与压力中心数据的比较。","authors":"Daphna Harel, Anat Vilnai Lubetzky","doi":"10.3233/THC-231338","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Standing is a basic human function that healthy adults take for granted, yet it is a complex perceptual-motor process that requires sensation of position and motion from the sensory systems.</p><p><strong>Objective: </strong>We assessed agreement between center of pressure data from a laboratory force-platform and head position data from an HTC Vive head-mounted display (HMD) for the evaluation of standing postural control. We investigated the impact of different statistical choices when assessing the relationship between two measurements. Specifically: 1) How does correlation and agreement statistics relate before and after logarithmic transformation? 2) Is there systemic or proportional bias between the force-platform and HMD measurements?</p><p><strong>Methods: </strong>We tested 37 adults (26 controls, 11 with unilateral vestibular hypofunction) standing on foam, observing a static or dynamic visual scene projected from the HMD. We quantified anterior-posterior and medio-lateral sway via Directional Path, Root Mean Square Velocity, Variance, and Power Spectral Density (PSD) from a force-platform and the HMD.</p><p><strong>Results: </strong>Intra-class correlations (ICCs) were moderate-to-good for the non-transformed data and good-to-excellent after logarithmic transformation for all outcomes except for PSD above 1 Hz. Correlations were higher than ICCs. Bland-Altman plots indicated proportional bias but not after logarithmic transformation.</p><p><strong>Conclusions: </strong>Both devices correlated linearly, and measure people's postural responses but cannot be used interchangeably, mostly because they appear to diverge with larger sway as evident on Bland-Altman plots of non-transformed data. Agreement between devices was excellent for low frequency movement but poor for high frequency small corrective movements.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436308/pdf/","citationCount":"0","resultStr":"{\"title\":\"Portable technology for postural control measurement: Comparing head position with center of pressure data.\",\"authors\":\"Daphna Harel, Anat Vilnai Lubetzky\",\"doi\":\"10.3233/THC-231338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Standing is a basic human function that healthy adults take for granted, yet it is a complex perceptual-motor process that requires sensation of position and motion from the sensory systems.</p><p><strong>Objective: </strong>We assessed agreement between center of pressure data from a laboratory force-platform and head position data from an HTC Vive head-mounted display (HMD) for the evaluation of standing postural control. We investigated the impact of different statistical choices when assessing the relationship between two measurements. Specifically: 1) How does correlation and agreement statistics relate before and after logarithmic transformation? 2) Is there systemic or proportional bias between the force-platform and HMD measurements?</p><p><strong>Methods: </strong>We tested 37 adults (26 controls, 11 with unilateral vestibular hypofunction) standing on foam, observing a static or dynamic visual scene projected from the HMD. We quantified anterior-posterior and medio-lateral sway via Directional Path, Root Mean Square Velocity, Variance, and Power Spectral Density (PSD) from a force-platform and the HMD.</p><p><strong>Results: </strong>Intra-class correlations (ICCs) were moderate-to-good for the non-transformed data and good-to-excellent after logarithmic transformation for all outcomes except for PSD above 1 Hz. Correlations were higher than ICCs. Bland-Altman plots indicated proportional bias but not after logarithmic transformation.</p><p><strong>Conclusions: </strong>Both devices correlated linearly, and measure people's postural responses but cannot be used interchangeably, mostly because they appear to diverge with larger sway as evident on Bland-Altman plots of non-transformed data. Agreement between devices was excellent for low frequency movement but poor for high frequency small corrective movements.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436308/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/THC-231338\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/THC-231338","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Portable technology for postural control measurement: Comparing head position with center of pressure data.
Background: Standing is a basic human function that healthy adults take for granted, yet it is a complex perceptual-motor process that requires sensation of position and motion from the sensory systems.
Objective: We assessed agreement between center of pressure data from a laboratory force-platform and head position data from an HTC Vive head-mounted display (HMD) for the evaluation of standing postural control. We investigated the impact of different statistical choices when assessing the relationship between two measurements. Specifically: 1) How does correlation and agreement statistics relate before and after logarithmic transformation? 2) Is there systemic or proportional bias between the force-platform and HMD measurements?
Methods: We tested 37 adults (26 controls, 11 with unilateral vestibular hypofunction) standing on foam, observing a static or dynamic visual scene projected from the HMD. We quantified anterior-posterior and medio-lateral sway via Directional Path, Root Mean Square Velocity, Variance, and Power Spectral Density (PSD) from a force-platform and the HMD.
Results: Intra-class correlations (ICCs) were moderate-to-good for the non-transformed data and good-to-excellent after logarithmic transformation for all outcomes except for PSD above 1 Hz. Correlations were higher than ICCs. Bland-Altman plots indicated proportional bias but not after logarithmic transformation.
Conclusions: Both devices correlated linearly, and measure people's postural responses but cannot be used interchangeably, mostly because they appear to diverge with larger sway as evident on Bland-Altman plots of non-transformed data. Agreement between devices was excellent for low frequency movement but poor for high frequency small corrective movements.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.