Patrice Roberge, Jean Ruel, André Bégin-Drolet, Jean Lemay, Simon Gakwaya, Jean-François Masse, Frédéric Sériès
{"title":"睡眠呼吸暂停患者上气道肌肉训练专用可移动设备的初步评估:概念验证研究","authors":"Patrice Roberge, Jean Ruel, André Bégin-Drolet, Jean Lemay, Simon Gakwaya, Jean-François Masse, Frédéric Sériès","doi":"10.2196/51901","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Obstructive sleep apnea/hypopnea syndrome (OSAHS) is a prevalent condition affecting a substantial portion of the global population, with its prevalence increasing over the past 2 decades. OSAHS is characterized by recurrent upper airway (UA) closure during sleep, leading to significant impacts on quality of life and heightened cardiovascular and metabolic morbidity. Despite continuous positive airway pressure (CPAP) being the gold standard treatment, patient adherence remains suboptimal due to various factors, such as discomfort, side effects, and treatment unacceptability.</p><p><strong>Objective: </strong>Considering the challenges associated with CPAP adherence, an alternative approach targeting the UA muscles through myofunctional therapy was explored. This noninvasive intervention involves exercises of the lips, tongue, or both to improve oropharyngeal functions and mitigate the severity of OSAHS. With the goal of developing a portable device for home-based myofunctional therapy with continuous monitoring of exercise performance and adherence, the primary outcome of this study was the degree of completion and adherence to a 4-week training session.</p><p><strong>Methods: </strong>This proof-of-concept study focused on a portable device that was designed to facilitate tongue and lip myofunctional therapy and enable precise monitoring of exercise performance and adherence. A clinical study was conducted to assess the effectiveness of this program in improving sleep-disordered breathing. Participants were instructed to perform tongue protrusion, lip pressure, and controlled breathing as part of various tasks 6 times a week for 4 weeks, with each session lasting approximately 35 minutes.</p><p><strong>Results: </strong>Ten participants were enrolled in the study (n=8 male; mean age 48, SD 22 years; mean BMI 29.3, SD 3.5 kg/m<sup>2</sup>; mean apnea-hypopnea index [AHI] 20.7, SD 17.8/hour). Among the 8 participants who completed the 4-week program, the overall compliance rate was 91% (175/192 sessions). For the tongue exercise, the success rate increased from 66% (211/320 exercises; SD 18%) on the first day to 85% (272/320 exercises; SD 17%) on the last day (P=.05). AHI did not change significantly after completion of training but a noteworthy correlation between successful lip exercise improvement and AHI reduction in the supine position was observed (R<sub>s</sub>=-0.76; P=.03). These findings demonstrate the potential of the device for accurately monitoring participants' performance in lip and tongue pressure exercises during myofunctional therapy. The diversity of the training program (it mixed exercises mixed training games), its ability to provide direct feedback for each exercise to the participants, and the easy measurement of treatment adherence are major strengths of our training program.</p><p><strong>Conclusions: </strong>The study's portable device for home-based myofunctional therapy shows promise as a noninvasive alternative for reducing the severity of OSAHS, with a notable correlation between successful lip exercise improvement and AHI reduction, warranting further development and investigation.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":"9 ","pages":"e51901"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058550/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preliminary Assessment of an Ambulatory Device Dedicated to Upper Airway Muscle Training in Patients With Sleep Apnea: Proof-of-Concept Study.\",\"authors\":\"Patrice Roberge, Jean Ruel, André Bégin-Drolet, Jean Lemay, Simon Gakwaya, Jean-François Masse, Frédéric Sériès\",\"doi\":\"10.2196/51901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Obstructive sleep apnea/hypopnea syndrome (OSAHS) is a prevalent condition affecting a substantial portion of the global population, with its prevalence increasing over the past 2 decades. OSAHS is characterized by recurrent upper airway (UA) closure during sleep, leading to significant impacts on quality of life and heightened cardiovascular and metabolic morbidity. Despite continuous positive airway pressure (CPAP) being the gold standard treatment, patient adherence remains suboptimal due to various factors, such as discomfort, side effects, and treatment unacceptability.</p><p><strong>Objective: </strong>Considering the challenges associated with CPAP adherence, an alternative approach targeting the UA muscles through myofunctional therapy was explored. This noninvasive intervention involves exercises of the lips, tongue, or both to improve oropharyngeal functions and mitigate the severity of OSAHS. With the goal of developing a portable device for home-based myofunctional therapy with continuous monitoring of exercise performance and adherence, the primary outcome of this study was the degree of completion and adherence to a 4-week training session.</p><p><strong>Methods: </strong>This proof-of-concept study focused on a portable device that was designed to facilitate tongue and lip myofunctional therapy and enable precise monitoring of exercise performance and adherence. A clinical study was conducted to assess the effectiveness of this program in improving sleep-disordered breathing. Participants were instructed to perform tongue protrusion, lip pressure, and controlled breathing as part of various tasks 6 times a week for 4 weeks, with each session lasting approximately 35 minutes.</p><p><strong>Results: </strong>Ten participants were enrolled in the study (n=8 male; mean age 48, SD 22 years; mean BMI 29.3, SD 3.5 kg/m<sup>2</sup>; mean apnea-hypopnea index [AHI] 20.7, SD 17.8/hour). Among the 8 participants who completed the 4-week program, the overall compliance rate was 91% (175/192 sessions). For the tongue exercise, the success rate increased from 66% (211/320 exercises; SD 18%) on the first day to 85% (272/320 exercises; SD 17%) on the last day (P=.05). AHI did not change significantly after completion of training but a noteworthy correlation between successful lip exercise improvement and AHI reduction in the supine position was observed (R<sub>s</sub>=-0.76; P=.03). These findings demonstrate the potential of the device for accurately monitoring participants' performance in lip and tongue pressure exercises during myofunctional therapy. The diversity of the training program (it mixed exercises mixed training games), its ability to provide direct feedback for each exercise to the participants, and the easy measurement of treatment adherence are major strengths of our training program.</p><p><strong>Conclusions: </strong>The study's portable device for home-based myofunctional therapy shows promise as a noninvasive alternative for reducing the severity of OSAHS, with a notable correlation between successful lip exercise improvement and AHI reduction, warranting further development and investigation.</p>\",\"PeriodicalId\":87288,\"journal\":{\"name\":\"JMIR biomedical engineering\",\"volume\":\"9 \",\"pages\":\"e51901\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058550/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/51901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/51901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preliminary Assessment of an Ambulatory Device Dedicated to Upper Airway Muscle Training in Patients With Sleep Apnea: Proof-of-Concept Study.
Background: Obstructive sleep apnea/hypopnea syndrome (OSAHS) is a prevalent condition affecting a substantial portion of the global population, with its prevalence increasing over the past 2 decades. OSAHS is characterized by recurrent upper airway (UA) closure during sleep, leading to significant impacts on quality of life and heightened cardiovascular and metabolic morbidity. Despite continuous positive airway pressure (CPAP) being the gold standard treatment, patient adherence remains suboptimal due to various factors, such as discomfort, side effects, and treatment unacceptability.
Objective: Considering the challenges associated with CPAP adherence, an alternative approach targeting the UA muscles through myofunctional therapy was explored. This noninvasive intervention involves exercises of the lips, tongue, or both to improve oropharyngeal functions and mitigate the severity of OSAHS. With the goal of developing a portable device for home-based myofunctional therapy with continuous monitoring of exercise performance and adherence, the primary outcome of this study was the degree of completion and adherence to a 4-week training session.
Methods: This proof-of-concept study focused on a portable device that was designed to facilitate tongue and lip myofunctional therapy and enable precise monitoring of exercise performance and adherence. A clinical study was conducted to assess the effectiveness of this program in improving sleep-disordered breathing. Participants were instructed to perform tongue protrusion, lip pressure, and controlled breathing as part of various tasks 6 times a week for 4 weeks, with each session lasting approximately 35 minutes.
Results: Ten participants were enrolled in the study (n=8 male; mean age 48, SD 22 years; mean BMI 29.3, SD 3.5 kg/m2; mean apnea-hypopnea index [AHI] 20.7, SD 17.8/hour). Among the 8 participants who completed the 4-week program, the overall compliance rate was 91% (175/192 sessions). For the tongue exercise, the success rate increased from 66% (211/320 exercises; SD 18%) on the first day to 85% (272/320 exercises; SD 17%) on the last day (P=.05). AHI did not change significantly after completion of training but a noteworthy correlation between successful lip exercise improvement and AHI reduction in the supine position was observed (Rs=-0.76; P=.03). These findings demonstrate the potential of the device for accurately monitoring participants' performance in lip and tongue pressure exercises during myofunctional therapy. The diversity of the training program (it mixed exercises mixed training games), its ability to provide direct feedback for each exercise to the participants, and the easy measurement of treatment adherence are major strengths of our training program.
Conclusions: The study's portable device for home-based myofunctional therapy shows promise as a noninvasive alternative for reducing the severity of OSAHS, with a notable correlation between successful lip exercise improvement and AHI reduction, warranting further development and investigation.