在聚合物电介质中构建异质结构 TiO2@Al2O3 纳米线阵列以提高储能性能

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Polymer Materials Pub Date : 2024-06-06 DOI:10.1021/acsapm.4c01006
Bo Peng, Hang Luo*, Haoran Xie, Di Zhai, Ru Guo, Yuan Liu, Minxi Li, Haiyan Chen, Jinchao Cao and Dou Zhang*, 
{"title":"在聚合物电介质中构建异质结构 TiO2@Al2O3 纳米线阵列以提高储能性能","authors":"Bo Peng,&nbsp;Hang Luo*,&nbsp;Haoran Xie,&nbsp;Di Zhai,&nbsp;Ru Guo,&nbsp;Yuan Liu,&nbsp;Minxi Li,&nbsp;Haiyan Chen,&nbsp;Jinchao Cao and Dou Zhang*,&nbsp;","doi":"10.1021/acsapm.4c01006","DOIUrl":null,"url":null,"abstract":"<p >Currently, polymer-based nanocomposites with high dielectric constant (<i>ε</i><sub>r</sub>) and breakdown strength (<i>E</i><sub>b</sub>) are urgently needed, which are always in a contradictory relationship. In this work, TiO<sub>2</sub> nanowire arrays coated by Al<sub>2</sub>O<sub>3</sub> which are synthesized by hydrothermal and ALD are introduced into the PVDF. The results show that the introduction of TiO<sub>2</sub> nanowire arrays with high orientation polarization significantly improves the <i>ε</i><sub>r</sub> of PVDF. In addition, the Al<sub>2</sub>O<sub>3</sub> can alleviate the dielectric mismatch at the interface between TiO<sub>2</sub> and PVDF and adjust the distribution of internal electric field, leading to simultaneously improving the <i>E</i><sub>b</sub> of nanocomposites. Finally, the TiO<sub>2</sub>@Al<sub>2</sub>O<sub>3</sub>-24/PVDF nanocomposite achieves a high <i>ε</i><sub><i>r</i></sub> of 21 (1 kHz) and energy storage density (<i>U</i><sub>e</sub>) of 15.3 J/cm<sup>3</sup>, which is more than twice that of pure PVDF (≈ 6.69 J/cm<sup>3</sup>). This work provides an effective strategy to relieve the contradictory relationship of simultaneous high <i>ε</i><sub>r</sub> and high <i>E</i><sub>b</sub> of dielectrics.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing Heterogeneous-Structure TiO2@Al2O3 Nanowire Arrays in Polymer Dielectrics for Improving the Energy Storage Performance\",\"authors\":\"Bo Peng,&nbsp;Hang Luo*,&nbsp;Haoran Xie,&nbsp;Di Zhai,&nbsp;Ru Guo,&nbsp;Yuan Liu,&nbsp;Minxi Li,&nbsp;Haiyan Chen,&nbsp;Jinchao Cao and Dou Zhang*,&nbsp;\",\"doi\":\"10.1021/acsapm.4c01006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Currently, polymer-based nanocomposites with high dielectric constant (<i>ε</i><sub>r</sub>) and breakdown strength (<i>E</i><sub>b</sub>) are urgently needed, which are always in a contradictory relationship. In this work, TiO<sub>2</sub> nanowire arrays coated by Al<sub>2</sub>O<sub>3</sub> which are synthesized by hydrothermal and ALD are introduced into the PVDF. The results show that the introduction of TiO<sub>2</sub> nanowire arrays with high orientation polarization significantly improves the <i>ε</i><sub>r</sub> of PVDF. In addition, the Al<sub>2</sub>O<sub>3</sub> can alleviate the dielectric mismatch at the interface between TiO<sub>2</sub> and PVDF and adjust the distribution of internal electric field, leading to simultaneously improving the <i>E</i><sub>b</sub> of nanocomposites. Finally, the TiO<sub>2</sub>@Al<sub>2</sub>O<sub>3</sub>-24/PVDF nanocomposite achieves a high <i>ε</i><sub><i>r</i></sub> of 21 (1 kHz) and energy storage density (<i>U</i><sub>e</sub>) of 15.3 J/cm<sup>3</sup>, which is more than twice that of pure PVDF (≈ 6.69 J/cm<sup>3</sup>). This work provides an effective strategy to relieve the contradictory relationship of simultaneous high <i>ε</i><sub>r</sub> and high <i>E</i><sub>b</sub> of dielectrics.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.4c01006\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c01006","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前,迫切需要具有高介电常数(εr)和击穿强度(Eb)的聚合物基纳米复合材料。本研究将通过水热法和原子层沉积法合成的涂覆有 Al2O3 的 TiO2 纳米线阵列引入到 PVDF 中。结果表明,引入高取向极化的 TiO2 纳米线阵列可显著改善 PVDF 的εr。此外,Al2O3 还能缓解 TiO2 与 PVDF 界面的介电失配,调整内部电场的分布,从而同时改善纳米复合材料的 Eb。最后,TiO2@Al2O3-24/PVDF 纳米复合材料的εr 高达 21(1 kHz),储能密度(Ue)达 15.3 J/cm3,是纯 PVDF(≈ 6.69 J/cm3)的两倍多。这项工作为缓解电介质同时具有高εr 和高 Eb 的矛盾关系提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constructing Heterogeneous-Structure TiO2@Al2O3 Nanowire Arrays in Polymer Dielectrics for Improving the Energy Storage Performance

Currently, polymer-based nanocomposites with high dielectric constant (εr) and breakdown strength (Eb) are urgently needed, which are always in a contradictory relationship. In this work, TiO2 nanowire arrays coated by Al2O3 which are synthesized by hydrothermal and ALD are introduced into the PVDF. The results show that the introduction of TiO2 nanowire arrays with high orientation polarization significantly improves the εr of PVDF. In addition, the Al2O3 can alleviate the dielectric mismatch at the interface between TiO2 and PVDF and adjust the distribution of internal electric field, leading to simultaneously improving the Eb of nanocomposites. Finally, the TiO2@Al2O3-24/PVDF nanocomposite achieves a high εr of 21 (1 kHz) and energy storage density (Ue) of 15.3 J/cm3, which is more than twice that of pure PVDF (≈ 6.69 J/cm3). This work provides an effective strategy to relieve the contradictory relationship of simultaneous high εr and high Eb of dielectrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
期刊最新文献
Multifunctional Biobased Polyurethane/Tannic Acid Composites with Controllable Damping, Flame-Retardant, and Ultraviolet-Shielding Performances Emissive Covalent Organic Frameworks: Fluorescence Improvement via a Controllable Vertex Strategy and Chemical Sensing Gradient Design of Spunbond-Meltblown-Hydroentanglement Composite Nonwovens for Directional Water Transport Freeze–Thaw-Induced, Metal Ion Cross-Linked, Mechanically Robust, and Highly Stretchable Composite Poly(vinyl alcohol) Hydrogels for Flexible Electronic Applications Rigid Photosensitive Polyimide Significantly Improves the Comprehensive Performance of UV-Curing Epoxy Acrylic Resins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1