{"title":"线性孔弹性模型总压力公式的两种非连续伽勒金有限元方法分析","authors":"Linshuang He , Jun Guo , Minfu Feng","doi":"10.1016/j.apnum.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we develop two discontinuous Galerkin (DG) finite element methods to solve the linear poroelasticity in the total pressure formulation, where displacement, fluid pressure, and total pressure are unknowns. The fully-discrete standard DG and conforming DG methods are presented based on the discontinuous approximations in space and the implicit Euler discretization in time. Compared to the standard DG method with penalty terms, the conforming DG method removes all stabilizers and maintains conforming finite element formulation by utilizing weak operators defined over discontinuous functions. The two methods provide locally conservative solutions and achieve locking-free properties in poroelasticity. We also derive the well-posedness and optimal <em>a priori</em> error estimates, which show that our methods satisfy parameter-robustness with respect to the infinitely large Lamé constant and the null-constrained specific storage coefficient. Several numerical experiments are performed to verify these theoretical results, even in heterogeneous porous media.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 60-85"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of two discontinuous Galerkin finite element methods for the total pressure formulation of linear poroelasticity model\",\"authors\":\"Linshuang He , Jun Guo , Minfu Feng\",\"doi\":\"10.1016/j.apnum.2024.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we develop two discontinuous Galerkin (DG) finite element methods to solve the linear poroelasticity in the total pressure formulation, where displacement, fluid pressure, and total pressure are unknowns. The fully-discrete standard DG and conforming DG methods are presented based on the discontinuous approximations in space and the implicit Euler discretization in time. Compared to the standard DG method with penalty terms, the conforming DG method removes all stabilizers and maintains conforming finite element formulation by utilizing weak operators defined over discontinuous functions. The two methods provide locally conservative solutions and achieve locking-free properties in poroelasticity. We also derive the well-posedness and optimal <em>a priori</em> error estimates, which show that our methods satisfy parameter-robustness with respect to the infinitely large Lamé constant and the null-constrained specific storage coefficient. Several numerical experiments are performed to verify these theoretical results, even in heterogeneous porous media.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"204 \",\"pages\":\"Pages 60-85\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001454\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001454","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Analysis of two discontinuous Galerkin finite element methods for the total pressure formulation of linear poroelasticity model
In this paper, we develop two discontinuous Galerkin (DG) finite element methods to solve the linear poroelasticity in the total pressure formulation, where displacement, fluid pressure, and total pressure are unknowns. The fully-discrete standard DG and conforming DG methods are presented based on the discontinuous approximations in space and the implicit Euler discretization in time. Compared to the standard DG method with penalty terms, the conforming DG method removes all stabilizers and maintains conforming finite element formulation by utilizing weak operators defined over discontinuous functions. The two methods provide locally conservative solutions and achieve locking-free properties in poroelasticity. We also derive the well-posedness and optimal a priori error estimates, which show that our methods satisfy parameter-robustness with respect to the infinitely large Lamé constant and the null-constrained specific storage coefficient. Several numerical experiments are performed to verify these theoretical results, even in heterogeneous porous media.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.