{"title":"一名戈谢病 3 型患者颅内戈谢瘤致聋的组织学和超微结构研究:基质减少疗法的效果","authors":"Shoji Yano , Rachel McGowan , Mikako Warren","doi":"10.1016/j.ymgmr.2024.101106","DOIUrl":null,"url":null,"abstract":"<div><p>Hearing loss is frequently associated with Gaucher disease (GD). Gaucher cells are enlarged reticuloendothelial cells containing glucocerebroside in the lysosomes due to deficiency of the glucocerebrosidase. Gaucheromas consist of accumulated Gaucher cells. Gaucher cells accumulate in variable tissues including the liver, spleen, bone marrow, and the middle ear and the mastoid causing conductive hearing loss. Neurons and astrocytes in the central nervous system are affected in neuronopathic GD leading to sensorineural hearing loss. Gaucheromas can develop even in patients treated with enzyme replacement therapy (ERT). We report a 19-year-old female patient with GD type 3 who developed profound bilateral hearing loss associated with intracranial Gaucheroma. Combination therapy of ERT with imiglucerase and substrate reduction therapy (SRT) with eliglustat significantly decreased the size of Gaucher cells and cleared the characteristic microtubular structures in the lysosomes in Gaucher cells. Early implementation of SRT may prevent at least conductive hearing impairment in GD although it may not prevent sensorineural hearing loss due to inner hair cell dysfunction which is also known to be associated with neuronopathic GD.</p></div>","PeriodicalId":18814,"journal":{"name":"Molecular Genetics and Metabolism Reports","volume":"40 ","pages":"Article 101106"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214426924000594/pdfft?md5=8ca89347a9625bde9b1ee36d251bf75e&pid=1-s2.0-S2214426924000594-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Histologic and ultrastructural study of intracranial Gaucheroma causing deafness in a patient with Gaucher disease type 3: Effects of substrate reduction therapy\",\"authors\":\"Shoji Yano , Rachel McGowan , Mikako Warren\",\"doi\":\"10.1016/j.ymgmr.2024.101106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hearing loss is frequently associated with Gaucher disease (GD). Gaucher cells are enlarged reticuloendothelial cells containing glucocerebroside in the lysosomes due to deficiency of the glucocerebrosidase. Gaucheromas consist of accumulated Gaucher cells. Gaucher cells accumulate in variable tissues including the liver, spleen, bone marrow, and the middle ear and the mastoid causing conductive hearing loss. Neurons and astrocytes in the central nervous system are affected in neuronopathic GD leading to sensorineural hearing loss. Gaucheromas can develop even in patients treated with enzyme replacement therapy (ERT). We report a 19-year-old female patient with GD type 3 who developed profound bilateral hearing loss associated with intracranial Gaucheroma. Combination therapy of ERT with imiglucerase and substrate reduction therapy (SRT) with eliglustat significantly decreased the size of Gaucher cells and cleared the characteristic microtubular structures in the lysosomes in Gaucher cells. Early implementation of SRT may prevent at least conductive hearing impairment in GD although it may not prevent sensorineural hearing loss due to inner hair cell dysfunction which is also known to be associated with neuronopathic GD.</p></div>\",\"PeriodicalId\":18814,\"journal\":{\"name\":\"Molecular Genetics and Metabolism Reports\",\"volume\":\"40 \",\"pages\":\"Article 101106\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214426924000594/pdfft?md5=8ca89347a9625bde9b1ee36d251bf75e&pid=1-s2.0-S2214426924000594-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics and Metabolism Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214426924000594\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Metabolism Reports","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214426924000594","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Histologic and ultrastructural study of intracranial Gaucheroma causing deafness in a patient with Gaucher disease type 3: Effects of substrate reduction therapy
Hearing loss is frequently associated with Gaucher disease (GD). Gaucher cells are enlarged reticuloendothelial cells containing glucocerebroside in the lysosomes due to deficiency of the glucocerebrosidase. Gaucheromas consist of accumulated Gaucher cells. Gaucher cells accumulate in variable tissues including the liver, spleen, bone marrow, and the middle ear and the mastoid causing conductive hearing loss. Neurons and astrocytes in the central nervous system are affected in neuronopathic GD leading to sensorineural hearing loss. Gaucheromas can develop even in patients treated with enzyme replacement therapy (ERT). We report a 19-year-old female patient with GD type 3 who developed profound bilateral hearing loss associated with intracranial Gaucheroma. Combination therapy of ERT with imiglucerase and substrate reduction therapy (SRT) with eliglustat significantly decreased the size of Gaucher cells and cleared the characteristic microtubular structures in the lysosomes in Gaucher cells. Early implementation of SRT may prevent at least conductive hearing impairment in GD although it may not prevent sensorineural hearing loss due to inner hair cell dysfunction which is also known to be associated with neuronopathic GD.
期刊介绍:
Molecular Genetics and Metabolism Reports is an open access journal that publishes molecular and metabolic reports describing investigations that use the tools of biochemistry and molecular biology for studies of normal and diseased states. In addition to original research articles, sequence reports, brief communication reports and letters to the editor are considered.