数据生态系统中数据质量工具的设计理论:从三个行业案例中得出的结论

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Data & Knowledge Engineering Pub Date : 2024-06-08 DOI:10.1016/j.datak.2024.102333
Marcel Altendeitering , Tobias Moritz Guggenberger , Frederik Möller
{"title":"数据生态系统中数据质量工具的设计理论:从三个行业案例中得出的结论","authors":"Marcel Altendeitering ,&nbsp;Tobias Moritz Guggenberger ,&nbsp;Frederik Möller","doi":"10.1016/j.datak.2024.102333","DOIUrl":null,"url":null,"abstract":"<div><p>Data ecosystems are a novel inter-organizational form of cooperation. They require at least one data provider and one or more data consumers. Existing research mainly addresses generativity mechanisms in this relationship, such as business models or role models for data ecosystems. However, an essential prerequisite for thriving data ecosystems is high data quality in the shared data. Without sufficient data quality, sharing data might lead to negative business consequences, given that the information drawn from them or services built on them might be incorrect or produce fraudulent results. We tackle this issue precisely since we report on a multi-case study deploying data quality tools in data ecosystem scenarios. From these cases, we derive generalized prescriptive design knowledge as a design theory to make the knowledge available for others designing data quality tools for data sharing. Subsequently, our study contributes to integrating the issue of data quality in data ecosystem research and provides practitioners with actionable guidelines inferred from three real-world cases.</p></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"153 ","pages":"Article 102333"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169023X24000570/pdfft?md5=c13245062cdefc052035d38866a21318&pid=1-s2.0-S0169023X24000570-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A design theory for data quality tools in data ecosystems: Findings from three industry cases\",\"authors\":\"Marcel Altendeitering ,&nbsp;Tobias Moritz Guggenberger ,&nbsp;Frederik Möller\",\"doi\":\"10.1016/j.datak.2024.102333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Data ecosystems are a novel inter-organizational form of cooperation. They require at least one data provider and one or more data consumers. Existing research mainly addresses generativity mechanisms in this relationship, such as business models or role models for data ecosystems. However, an essential prerequisite for thriving data ecosystems is high data quality in the shared data. Without sufficient data quality, sharing data might lead to negative business consequences, given that the information drawn from them or services built on them might be incorrect or produce fraudulent results. We tackle this issue precisely since we report on a multi-case study deploying data quality tools in data ecosystem scenarios. From these cases, we derive generalized prescriptive design knowledge as a design theory to make the knowledge available for others designing data quality tools for data sharing. Subsequently, our study contributes to integrating the issue of data quality in data ecosystem research and provides practitioners with actionable guidelines inferred from three real-world cases.</p></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"153 \",\"pages\":\"Article 102333\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24000570/pdfft?md5=c13245062cdefc052035d38866a21318&pid=1-s2.0-S0169023X24000570-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24000570\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24000570","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

数据生态系统是一种新颖的组织间合作形式。它们至少需要一个数据提供者和一个或多个数据消费者。现有研究主要涉及这种关系中的生成机制,如数据生态系统的商业模式或角色模型。然而,数据生态系统蓬勃发展的一个基本前提是共享数据的高质量。如果没有足够的数据质量,共享数据可能会导致负面的商业后果,因为从数据中获取的信息或基于数据构建的服务可能不正确或产生欺诈性结果。我们正是要解决这个问题,因为我们报告了在数据生态系统场景中部署数据质量工具的多案例研究。从这些案例中,我们得出了通用的规范性设计知识,并将其作为一种设计理论,为其他设计数据共享数据质量工具的人提供相关知识。随后,我们的研究有助于将数据质量问题纳入数据生态系统研究,并为从业人员提供从三个真实世界案例中推断出的可操作指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A design theory for data quality tools in data ecosystems: Findings from three industry cases

Data ecosystems are a novel inter-organizational form of cooperation. They require at least one data provider and one or more data consumers. Existing research mainly addresses generativity mechanisms in this relationship, such as business models or role models for data ecosystems. However, an essential prerequisite for thriving data ecosystems is high data quality in the shared data. Without sufficient data quality, sharing data might lead to negative business consequences, given that the information drawn from them or services built on them might be incorrect or produce fraudulent results. We tackle this issue precisely since we report on a multi-case study deploying data quality tools in data ecosystem scenarios. From these cases, we derive generalized prescriptive design knowledge as a design theory to make the knowledge available for others designing data quality tools for data sharing. Subsequently, our study contributes to integrating the issue of data quality in data ecosystem research and provides practitioners with actionable guidelines inferred from three real-world cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
期刊最新文献
Goal modelling in aeronautics: Practical applications for aircraft and manufacturing designs Ethical reasoning methods for ICT: What they are and when to use them SSQTKG: A Subgraph-based Semantic Query Approach for Temporal Knowledge Graph NoSQL document data migration strategy in the context of schema evolution VarClaMM: A reference meta-model to understand DNA variant classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1