Alfredo Alcayde;Jorge Ventura;Francisco G. Montoya
{"title":"利用网络图论的超复杂信号和图像处理技术:确定核心研究方向 [超复杂信号和图像处理]","authors":"Alfredo Alcayde;Jorge Ventura;Francisco G. Montoya","doi":"10.1109/MSP.2024.3365463","DOIUrl":null,"url":null,"abstract":"This article aims to identify core research directions and provide a comprehensive overview of major advancements in the field of hypercomplex signal and image processing techniques using network graph theory. The methodology employs community detection algorithms on research networks to uncover relationships among researchers and topic fields in the hypercomplex domain. This is accomplished through a comprehensive academic database search and metadata analysis from pertinent papers. The article focuses on the utility of these techniques in various applications and the value of mathematically rich frameworks. The results demonstrate how optimized network-based approaches can determine common topics and emerging lines of research. The article identifies distinct core research directions, including significant advancements in image/video processing, computer vision, signal processing, security, navigation, and machine learning within the hypercomplex domain. Current trends, challenges, opportunities, and the most promising directions in hypercomplex signal and image processing are highlighted based on a thorough literature analysis. This provides actionable insights for researchers to advance this domain.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"41 2","pages":"14-28"},"PeriodicalIF":9.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypercomplex Techniques in Signal and Image Processing Using Network Graph Theory: Identifying core research directions [Hypercomplex Signal and Image Processing]\",\"authors\":\"Alfredo Alcayde;Jorge Ventura;Francisco G. Montoya\",\"doi\":\"10.1109/MSP.2024.3365463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article aims to identify core research directions and provide a comprehensive overview of major advancements in the field of hypercomplex signal and image processing techniques using network graph theory. The methodology employs community detection algorithms on research networks to uncover relationships among researchers and topic fields in the hypercomplex domain. This is accomplished through a comprehensive academic database search and metadata analysis from pertinent papers. The article focuses on the utility of these techniques in various applications and the value of mathematically rich frameworks. The results demonstrate how optimized network-based approaches can determine common topics and emerging lines of research. The article identifies distinct core research directions, including significant advancements in image/video processing, computer vision, signal processing, security, navigation, and machine learning within the hypercomplex domain. Current trends, challenges, opportunities, and the most promising directions in hypercomplex signal and image processing are highlighted based on a thorough literature analysis. This provides actionable insights for researchers to advance this domain.\",\"PeriodicalId\":13246,\"journal\":{\"name\":\"IEEE Signal Processing Magazine\",\"volume\":\"41 2\",\"pages\":\"14-28\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Magazine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10558749/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Magazine","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10558749/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Hypercomplex Techniques in Signal and Image Processing Using Network Graph Theory: Identifying core research directions [Hypercomplex Signal and Image Processing]
This article aims to identify core research directions and provide a comprehensive overview of major advancements in the field of hypercomplex signal and image processing techniques using network graph theory. The methodology employs community detection algorithms on research networks to uncover relationships among researchers and topic fields in the hypercomplex domain. This is accomplished through a comprehensive academic database search and metadata analysis from pertinent papers. The article focuses on the utility of these techniques in various applications and the value of mathematically rich frameworks. The results demonstrate how optimized network-based approaches can determine common topics and emerging lines of research. The article identifies distinct core research directions, including significant advancements in image/video processing, computer vision, signal processing, security, navigation, and machine learning within the hypercomplex domain. Current trends, challenges, opportunities, and the most promising directions in hypercomplex signal and image processing are highlighted based on a thorough literature analysis. This provides actionable insights for researchers to advance this domain.
期刊介绍:
EEE Signal Processing Magazine is a publication that focuses on signal processing research and applications. It publishes tutorial-style articles, columns, and forums that cover a wide range of topics related to signal processing. The magazine aims to provide the research, educational, and professional communities with the latest technical developments, issues, and events in the field. It serves as the main communication platform for the society, addressing important matters that concern all members.