将稳健的 MALDI 质谱方法应用于蜂花粉调查。

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Analytical and Bioanalytical Chemistry Pub Date : 2024-08-01 Epub Date: 2024-06-15 DOI:10.1007/s00216-024-05368-9
Chiara Braglia, Daniele Alberoni, Diana Di Gioia, Alessandra Giacomelli, Michel Bocquet, Philippe Bulet
{"title":"将稳健的 MALDI 质谱方法应用于蜂花粉调查。","authors":"Chiara Braglia, Daniele Alberoni, Diana Di Gioia, Alessandra Giacomelli, Michel Bocquet, Philippe Bulet","doi":"10.1007/s00216-024-05368-9","DOIUrl":null,"url":null,"abstract":"<p><p>Pollen collected by pollinators can be used as a marker of the foraging behavior as well as indicate the botanical species present in each environment. Pollen intake is essential for pollinators' health and survival. During the foraging activity, some pollinators, such as honeybees, manipulate the collected pollen mixing it with salivary secretions and nectar (corbicular pollen) changing the pollen chemical profile. Different tools have been developed for the identification of the botanical origin of pollen, based on microscopy, spectrometry, or molecular markers. However, up to date, corbicular pollen has never been investigated. In our work, corbicular pollen from 5 regions with different climate conditions was collected during spring. Pollens were identified with microscopy-based techniques, and then analyzed in MALDI-MS. Four different chemical extraction solutions and two physical disruption methods were tested to achieve a MALDI-MS effective protocol. The best performance was obtained using a sonication disruption method after extraction with acetic acid or trifluoroacetic acid. Therefore, we propose a new rapid and reliable methodology for the identification of the botanical origin of the corbicular pollens using MALDI-MS. This new approach opens to a wide range of environmental studies spanning from plant biodiversity to ecosystem trophic interactions.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271380/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of a robust MALDI mass spectrometry approach for bee pollen investigation.\",\"authors\":\"Chiara Braglia, Daniele Alberoni, Diana Di Gioia, Alessandra Giacomelli, Michel Bocquet, Philippe Bulet\",\"doi\":\"10.1007/s00216-024-05368-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pollen collected by pollinators can be used as a marker of the foraging behavior as well as indicate the botanical species present in each environment. Pollen intake is essential for pollinators' health and survival. During the foraging activity, some pollinators, such as honeybees, manipulate the collected pollen mixing it with salivary secretions and nectar (corbicular pollen) changing the pollen chemical profile. Different tools have been developed for the identification of the botanical origin of pollen, based on microscopy, spectrometry, or molecular markers. However, up to date, corbicular pollen has never been investigated. In our work, corbicular pollen from 5 regions with different climate conditions was collected during spring. Pollens were identified with microscopy-based techniques, and then analyzed in MALDI-MS. Four different chemical extraction solutions and two physical disruption methods were tested to achieve a MALDI-MS effective protocol. The best performance was obtained using a sonication disruption method after extraction with acetic acid or trifluoroacetic acid. Therefore, we propose a new rapid and reliable methodology for the identification of the botanical origin of the corbicular pollens using MALDI-MS. This new approach opens to a wide range of environmental studies spanning from plant biodiversity to ecosystem trophic interactions.</p>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271380/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00216-024-05368-9\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05368-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

授粉昆虫采集的花粉可以作为觅食行为的标记,也可以表明每个环境中存在的植物种类。花粉的摄取对传粉昆虫的健康和生存至关重要。在觅食活动中,一些授粉昆虫(如蜜蜂)会将采集到的花粉与唾液分泌物和花蜜(角质花粉)混合,从而改变花粉的化学成分。目前已开发出不同的工具,通过显微镜、光谱分析或分子标记来鉴定花粉的植物来源。然而,迄今为止,人们还从未对鸡冠花粉进行过研究。我们在春季从 5 个不同气候条件的地区采集了鸡冠花粉。花粉用显微镜技术进行鉴定,然后用 MALDI-MS 进行分析。为了实现 MALDI-MS 的有效方案,对四种不同的化学提取溶液和两种物理破坏方法进行了测试。在使用乙酸或三氟乙酸提取后,使用超声破坏法获得了最佳性能。因此,我们提出了一种利用 MALDI-MS 鉴定鸡冠花粉植物来源的快速可靠的新方法。这种新方法可用于从植物生物多样性到生态系统营养相互作用等广泛的环境研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of a robust MALDI mass spectrometry approach for bee pollen investigation.

Pollen collected by pollinators can be used as a marker of the foraging behavior as well as indicate the botanical species present in each environment. Pollen intake is essential for pollinators' health and survival. During the foraging activity, some pollinators, such as honeybees, manipulate the collected pollen mixing it with salivary secretions and nectar (corbicular pollen) changing the pollen chemical profile. Different tools have been developed for the identification of the botanical origin of pollen, based on microscopy, spectrometry, or molecular markers. However, up to date, corbicular pollen has never been investigated. In our work, corbicular pollen from 5 regions with different climate conditions was collected during spring. Pollens were identified with microscopy-based techniques, and then analyzed in MALDI-MS. Four different chemical extraction solutions and two physical disruption methods were tested to achieve a MALDI-MS effective protocol. The best performance was obtained using a sonication disruption method after extraction with acetic acid or trifluoroacetic acid. Therefore, we propose a new rapid and reliable methodology for the identification of the botanical origin of the corbicular pollens using MALDI-MS. This new approach opens to a wide range of environmental studies spanning from plant biodiversity to ecosystem trophic interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
期刊最新文献
Extraction of redox extracellular vesicles using exclusion-based sample preparation. Monomer-mediated growth of β-cyclodextrin-based microporous organic network as stationary phase for capillary electrochromatography. The evolution of data treatment tools in single-particle and single-cell ICP-MS analytics. Development of a high-throughput UHPLC-MS/MS method for the analysis of Fusarium and Alternaria toxins in cereals and cereal-based food. Rigorous scientific inquiry guided by creativity, curiosity and support: One of the last Renaissance scientists of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1