{"title":"从数字组织病理学图像中对切除肝细胞癌中的贬义和非贬义架构进行深度学习分类和量化。","authors":"","doi":"10.1016/j.ajpath.2024.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>Liver resection is one of the best treatments for small hepatocellular carcinoma (HCC), but post-resection recurrence is frequent. Biotherapies have emerged as an efficient adjuvant treatment, making the identification of patients at high risk of recurrence critical. Microvascular invasion (mVI), poor differentiation, pejorative macrotrabecular architectures, and vessels encapsulating tumor clusters architectures are the most accurate histologic predictors of recurrence, but their evaluation is time-consuming and imperfect. Herein, a supervised deep learning–based approach with ResNet34 on 680 whole slide images (WSIs) from 107 liver resection specimens was used to build an algorithm for the identification and quantification of these pejorative architectures. This model achieved an accuracy of 0.864 at patch level and 0.823 at WSI level. To assess its robustness, it was validated on an external cohort of 29 HCCs from another hospital, with an accuracy of 0.787 at WSI level, affirming its generalization capabilities. Moreover, the largest connected areas of the pejorative architectures extracted from the model were positively correlated to the presence of mVI and the number of tumor emboli. These results suggest that the identification of pejorative architectures could be an efficient surrogate of mVI and have a strong predictive value for the risk of recurrence. This study is the first step in the construction of a composite predictive algorithm for early post-resection recurrence of HCC, including artificial intelligence–based features.</p></div>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Classification and Quantification of Pejorative and Nonpejorative Architectures in Resected Hepatocellular Carcinoma from Digital Histopathologic Images\",\"authors\":\"\",\"doi\":\"10.1016/j.ajpath.2024.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Liver resection is one of the best treatments for small hepatocellular carcinoma (HCC), but post-resection recurrence is frequent. Biotherapies have emerged as an efficient adjuvant treatment, making the identification of patients at high risk of recurrence critical. Microvascular invasion (mVI), poor differentiation, pejorative macrotrabecular architectures, and vessels encapsulating tumor clusters architectures are the most accurate histologic predictors of recurrence, but their evaluation is time-consuming and imperfect. Herein, a supervised deep learning–based approach with ResNet34 on 680 whole slide images (WSIs) from 107 liver resection specimens was used to build an algorithm for the identification and quantification of these pejorative architectures. This model achieved an accuracy of 0.864 at patch level and 0.823 at WSI level. To assess its robustness, it was validated on an external cohort of 29 HCCs from another hospital, with an accuracy of 0.787 at WSI level, affirming its generalization capabilities. Moreover, the largest connected areas of the pejorative architectures extracted from the model were positively correlated to the presence of mVI and the number of tumor emboli. These results suggest that the identification of pejorative architectures could be an efficient surrogate of mVI and have a strong predictive value for the risk of recurrence. This study is the first step in the construction of a composite predictive algorithm for early post-resection recurrence of HCC, including artificial intelligence–based features.</p></div>\",\"PeriodicalId\":7623,\"journal\":{\"name\":\"American Journal of Pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0002944024002062\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0002944024002062","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
Deep Learning Classification and Quantification of Pejorative and Nonpejorative Architectures in Resected Hepatocellular Carcinoma from Digital Histopathologic Images
Liver resection is one of the best treatments for small hepatocellular carcinoma (HCC), but post-resection recurrence is frequent. Biotherapies have emerged as an efficient adjuvant treatment, making the identification of patients at high risk of recurrence critical. Microvascular invasion (mVI), poor differentiation, pejorative macrotrabecular architectures, and vessels encapsulating tumor clusters architectures are the most accurate histologic predictors of recurrence, but their evaluation is time-consuming and imperfect. Herein, a supervised deep learning–based approach with ResNet34 on 680 whole slide images (WSIs) from 107 liver resection specimens was used to build an algorithm for the identification and quantification of these pejorative architectures. This model achieved an accuracy of 0.864 at patch level and 0.823 at WSI level. To assess its robustness, it was validated on an external cohort of 29 HCCs from another hospital, with an accuracy of 0.787 at WSI level, affirming its generalization capabilities. Moreover, the largest connected areas of the pejorative architectures extracted from the model were positively correlated to the presence of mVI and the number of tumor emboli. These results suggest that the identification of pejorative architectures could be an efficient surrogate of mVI and have a strong predictive value for the risk of recurrence. This study is the first step in the construction of a composite predictive algorithm for early post-resection recurrence of HCC, including artificial intelligence–based features.
期刊介绍:
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.