{"title":"WhiB 样蛋白:结构、功能和机制的多样性","authors":"Daisy Guiza Beltran , Tao Wan , LiMei Zhang","doi":"10.1016/j.bbamcr.2024.119787","DOIUrl":null,"url":null,"abstract":"<div><p>The WhiB-Like (Wbl) proteins are a large family of iron-sulfur (Fe-S) cluster-containing transcription factors exclusively found in the phylum Actinobacteria, including the notable genera like Mycobacteria, Streptomycetes and Corynebacteria. These proteins play pivotal roles in diverse biological processes, such as cell development, redox stress response and antibiotic resistance. Members of the Wbl family exhibit remarkable diversity in their sequences, structures and functions, attracting great attention since their first discovery. This review highlights the most recent breakthroughs in understanding the structural and mechanistic aspects of Wbl-dependent transcriptional regulation.</p></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1871 7","pages":"Article 119787"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WhiB-like proteins: Diversity of structure, function and mechanism\",\"authors\":\"Daisy Guiza Beltran , Tao Wan , LiMei Zhang\",\"doi\":\"10.1016/j.bbamcr.2024.119787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The WhiB-Like (Wbl) proteins are a large family of iron-sulfur (Fe-S) cluster-containing transcription factors exclusively found in the phylum Actinobacteria, including the notable genera like Mycobacteria, Streptomycetes and Corynebacteria. These proteins play pivotal roles in diverse biological processes, such as cell development, redox stress response and antibiotic resistance. Members of the Wbl family exhibit remarkable diversity in their sequences, structures and functions, attracting great attention since their first discovery. This review highlights the most recent breakthroughs in understanding the structural and mechanistic aspects of Wbl-dependent transcriptional regulation.</p></div>\",\"PeriodicalId\":8754,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular cell research\",\"volume\":\"1871 7\",\"pages\":\"Article 119787\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular cell research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167488924001307\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488924001307","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
WhiB-like proteins: Diversity of structure, function and mechanism
The WhiB-Like (Wbl) proteins are a large family of iron-sulfur (Fe-S) cluster-containing transcription factors exclusively found in the phylum Actinobacteria, including the notable genera like Mycobacteria, Streptomycetes and Corynebacteria. These proteins play pivotal roles in diverse biological processes, such as cell development, redox stress response and antibiotic resistance. Members of the Wbl family exhibit remarkable diversity in their sequences, structures and functions, attracting great attention since their first discovery. This review highlights the most recent breakthroughs in understanding the structural and mechanistic aspects of Wbl-dependent transcriptional regulation.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.