热适应昆明小鼠棕色脂肪组织能量代谢的调整

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-06-13 DOI:10.1016/j.cbpb.2024.111000
Yang-Yang Guo , Xinyue Wang , Fangyan Liu , Junyu Zhang , Shan-Shan Wang , Xiangyu Zhao , Zhe Wang , Deli Xu
{"title":"热适应昆明小鼠棕色脂肪组织能量代谢的调整","authors":"Yang-Yang Guo ,&nbsp;Xinyue Wang ,&nbsp;Fangyan Liu ,&nbsp;Junyu Zhang ,&nbsp;Shan-Shan Wang ,&nbsp;Xiangyu Zhao ,&nbsp;Zhe Wang ,&nbsp;Deli Xu","doi":"10.1016/j.cbpb.2024.111000","DOIUrl":null,"url":null,"abstract":"<div><p>The thermogenic capacity of brown adipose tissue (BAT) in rodents decreases with prolonged heat exposure. However, the underlying mechanisms are not well understood. In this study, Kunming mice were acclimated at 23 ± 1 °C and 33 ± 1 °C for four weeks each to examine the body heat balance and BAT alterations. Results showed that heat-acclimated Kunming mice exhibited reduced body mass and elevated body temperature. Additionally, they displayed lower resting metabolic rates, diminished non-shivering thermogenesis, and reduced BAT thermogenic function. Metabolically, there was a significant reduction in several key metabolites involved in energy metabolism in BAT, including thiamine pyrophosphate, citric acid, cis-Aconitate, isocitric acid, oxoglutaric acid, succinate, fumarate, L-Malic acid, oxaloacetate, flavin mononucleotide, nicotinamide adenine dinucleotide, and adenosine 5′-triphosphate. These findings suggest that BAT adapts to heat acclimation by regulating pathways related to pyruvate oxidation, tricarboxylic acid cycle, and oxidative phosphorylation, which may help maintain thermal homeostasis in Kunming mice.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adjustments in energy metabolism of brown adipose tissue in heat-acclimated Kunming mice\",\"authors\":\"Yang-Yang Guo ,&nbsp;Xinyue Wang ,&nbsp;Fangyan Liu ,&nbsp;Junyu Zhang ,&nbsp;Shan-Shan Wang ,&nbsp;Xiangyu Zhao ,&nbsp;Zhe Wang ,&nbsp;Deli Xu\",\"doi\":\"10.1016/j.cbpb.2024.111000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The thermogenic capacity of brown adipose tissue (BAT) in rodents decreases with prolonged heat exposure. However, the underlying mechanisms are not well understood. In this study, Kunming mice were acclimated at 23 ± 1 °C and 33 ± 1 °C for four weeks each to examine the body heat balance and BAT alterations. Results showed that heat-acclimated Kunming mice exhibited reduced body mass and elevated body temperature. Additionally, they displayed lower resting metabolic rates, diminished non-shivering thermogenesis, and reduced BAT thermogenic function. Metabolically, there was a significant reduction in several key metabolites involved in energy metabolism in BAT, including thiamine pyrophosphate, citric acid, cis-Aconitate, isocitric acid, oxoglutaric acid, succinate, fumarate, L-Malic acid, oxaloacetate, flavin mononucleotide, nicotinamide adenine dinucleotide, and adenosine 5′-triphosphate. These findings suggest that BAT adapts to heat acclimation by regulating pathways related to pyruvate oxidation, tricarboxylic acid cycle, and oxidative phosphorylation, which may help maintain thermal homeostasis in Kunming mice.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096495924000678\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495924000678","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

啮齿动物棕色脂肪组织(BAT)的产热能力会随着长时间受热而降低。然而,其潜在机制尚不十分清楚。在这项研究中,昆明小鼠分别在 23 ± 1 °C和 33 ± 1 °C下驯化四周,以检测体内热平衡和 BAT 的变化。结果显示,热螯合昆明小鼠的体质量降低,体温升高。此外,昆明小鼠的静息代谢率降低,非颤抖性产热减少,BAT产热功能降低。在代谢方面,BAT 中参与能量代谢的几种关键代谢物显著减少,包括焦磷酸硫胺素、柠檬酸、顺式柠檬酸、异柠檬酸、氧谷氨酸、琥珀酸、富马酸、L-苹果酸、草酰乙酸、黄素单核苷酸、烟酰胺腺嘌呤二核苷酸和腺苷 5'-三磷酸。这些发现表明,BAT通过调节与丙酮酸氧化、三羧酸循环和氧化磷酸化相关的途径来适应热适应,这可能有助于维持昆明小鼠的热平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adjustments in energy metabolism of brown adipose tissue in heat-acclimated Kunming mice

The thermogenic capacity of brown adipose tissue (BAT) in rodents decreases with prolonged heat exposure. However, the underlying mechanisms are not well understood. In this study, Kunming mice were acclimated at 23 ± 1 °C and 33 ± 1 °C for four weeks each to examine the body heat balance and BAT alterations. Results showed that heat-acclimated Kunming mice exhibited reduced body mass and elevated body temperature. Additionally, they displayed lower resting metabolic rates, diminished non-shivering thermogenesis, and reduced BAT thermogenic function. Metabolically, there was a significant reduction in several key metabolites involved in energy metabolism in BAT, including thiamine pyrophosphate, citric acid, cis-Aconitate, isocitric acid, oxoglutaric acid, succinate, fumarate, L-Malic acid, oxaloacetate, flavin mononucleotide, nicotinamide adenine dinucleotide, and adenosine 5′-triphosphate. These findings suggest that BAT adapts to heat acclimation by regulating pathways related to pyruvate oxidation, tricarboxylic acid cycle, and oxidative phosphorylation, which may help maintain thermal homeostasis in Kunming mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1