椭圆振动辅助切割下铜机械行为的原子尺度研究

Jiaming Zhan, Ye Tian, Hao Wang
{"title":"椭圆振动辅助切割下铜机械行为的原子尺度研究","authors":"Jiaming Zhan,&nbsp;Ye Tian,&nbsp;Hao Wang","doi":"10.1016/j.procir.2024.05.085","DOIUrl":null,"url":null,"abstract":"<div><p>Vibration-assisted cutting is a promising technique widely utilized to enhance machining efficiency and achieve superior material finishes compared to traditional cutting methods. However, the underlying mechanism of how vibration impacts material properties and deformation requires an in-depth understanding. In this study, molecular dynamics (MD) simulations were employed to investigate the atomic-scale effects of vibration on copper. The result reveals significant changes in the mechanical behaviours of copper under different cutting conditions. The high-frequency vibration of the cutting tool introduces a notable temperature rise to the workpiece, which is considered beneficial for improving the material removal efficiency. Additionally, the cyclic loading of the tool assists in reducing cutting forces and polishing the machined surface to enhance the surface integrity. Furthermore, the analysis of dislocations and defects suggests that vibration effectively prevents large-scale lattice deformations and visible cracks, thereby enhancing surface finish. This research provides insights into the role of vibration in improving cutting processes and surface quality.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124002890/pdf?md5=3dd46679b70ca3ebc1a2112eb81ea02c&pid=1-s2.0-S2212827124002890-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Atomic-scale study on mechanical behaviours of copper under elliptical vibration-assisted cutting\",\"authors\":\"Jiaming Zhan,&nbsp;Ye Tian,&nbsp;Hao Wang\",\"doi\":\"10.1016/j.procir.2024.05.085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vibration-assisted cutting is a promising technique widely utilized to enhance machining efficiency and achieve superior material finishes compared to traditional cutting methods. However, the underlying mechanism of how vibration impacts material properties and deformation requires an in-depth understanding. In this study, molecular dynamics (MD) simulations were employed to investigate the atomic-scale effects of vibration on copper. The result reveals significant changes in the mechanical behaviours of copper under different cutting conditions. The high-frequency vibration of the cutting tool introduces a notable temperature rise to the workpiece, which is considered beneficial for improving the material removal efficiency. Additionally, the cyclic loading of the tool assists in reducing cutting forces and polishing the machined surface to enhance the surface integrity. Furthermore, the analysis of dislocations and defects suggests that vibration effectively prevents large-scale lattice deformations and visible cracks, thereby enhancing surface finish. This research provides insights into the role of vibration in improving cutting processes and surface quality.</p></div>\",\"PeriodicalId\":20535,\"journal\":{\"name\":\"Procedia CIRP\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212827124002890/pdf?md5=3dd46679b70ca3ebc1a2112eb81ea02c&pid=1-s2.0-S2212827124002890-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia CIRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212827124002890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827124002890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与传统切削方法相比,振动辅助切削是一种前景广阔的技术,可提高加工效率并获得更佳的材料表面效果。然而,我们需要深入了解振动如何影响材料特性和变形的内在机制。本研究采用分子动力学(MD)模拟来研究振动对铜的原子尺度效应。结果表明,在不同的切削条件下,铜的机械性能发生了显著变化。切削工具的高频振动会使工件温度明显升高,这有利于提高材料去除效率。此外,刀具的循环加载有助于降低切削力,抛光加工表面以提高表面完整性。此外,对位错和缺陷的分析表明,振动能有效防止大规模晶格变形和可见裂纹,从而提高表面光洁度。这项研究有助于深入了解振动在改善切削过程和表面质量方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atomic-scale study on mechanical behaviours of copper under elliptical vibration-assisted cutting

Vibration-assisted cutting is a promising technique widely utilized to enhance machining efficiency and achieve superior material finishes compared to traditional cutting methods. However, the underlying mechanism of how vibration impacts material properties and deformation requires an in-depth understanding. In this study, molecular dynamics (MD) simulations were employed to investigate the atomic-scale effects of vibration on copper. The result reveals significant changes in the mechanical behaviours of copper under different cutting conditions. The high-frequency vibration of the cutting tool introduces a notable temperature rise to the workpiece, which is considered beneficial for improving the material removal efficiency. Additionally, the cyclic loading of the tool assists in reducing cutting forces and polishing the machined surface to enhance the surface integrity. Furthermore, the analysis of dislocations and defects suggests that vibration effectively prevents large-scale lattice deformations and visible cracks, thereby enhancing surface finish. This research provides insights into the role of vibration in improving cutting processes and surface quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
期刊最新文献
Editorial Preface Off-axis monitoring of the melt pool spatial information in Laser Metal Deposition process Machine learning-assisted collection of reduced sensor data for improved analytics pipeline Demand-Oriented Optimization of Machine Tools: a Closed Loop Approach for Safe Exploration in Series Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1