多虚拟同步机(n-VISMA)微电网的小信号转子角稳定性

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Generation Transmission & Distribution Pub Date : 2024-05-27 DOI:10.1049/gtd2.13179
Kamilu Alabi Sanusi, Hans-Peter Beck
{"title":"多虚拟同步机(n-VISMA)微电网的小信号转子角稳定性","authors":"Kamilu Alabi Sanusi,&nbsp;Hans-Peter Beck","doi":"10.1049/gtd2.13179","DOIUrl":null,"url":null,"abstract":"<p>Autonomous microgrid is known to lack appropriate inertia and damping for grid stabilization. Due to this, virtual synchronous machine (VISMA) has been introduced to provide necessary ancillary services through control of power converters. In a multi-VISMA (<i>n</i>-VISMA) microgrid, relative rotor angle stability of the power system is dependent on the active power balance after small perturbation. Thus, the use of relevant analytical models are essential issues for microgrid stability analysis. This paper presents a comprehensive small-signal stability analysis to study inherent electromechanical oscillations in the virtual rotors. The subsystems of the microgrid consisting of VISMA, network, load and the outer power control were all modelled in Synchronous Reference Frame. The small-signal model (SSM) was tested on IEEE-9 bus system with VISMA replacing electromechanical synchronous machines on the network. To validate the developed numerical analytics, dynamic responses of the SSM are compared with those of the non-linear (NL) system dynamics and the results reveal that the developed linearized SSM is sufficient to accurately characterize behaviour of the VISMA microgrid when operated in autonomous mode. Eigenvalues analysis and parameter sensitivities of the critical modes were investigated. Oscillatory participations of the VISMAs and steady state stability limit of the microgrid have also been investigated.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13179","citationCount":"0","resultStr":"{\"title\":\"Small-signal rotor angle stability of multi-virtual synchronous machine (n-VISMA) microgrid\",\"authors\":\"Kamilu Alabi Sanusi,&nbsp;Hans-Peter Beck\",\"doi\":\"10.1049/gtd2.13179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Autonomous microgrid is known to lack appropriate inertia and damping for grid stabilization. Due to this, virtual synchronous machine (VISMA) has been introduced to provide necessary ancillary services through control of power converters. In a multi-VISMA (<i>n</i>-VISMA) microgrid, relative rotor angle stability of the power system is dependent on the active power balance after small perturbation. Thus, the use of relevant analytical models are essential issues for microgrid stability analysis. This paper presents a comprehensive small-signal stability analysis to study inherent electromechanical oscillations in the virtual rotors. The subsystems of the microgrid consisting of VISMA, network, load and the outer power control were all modelled in Synchronous Reference Frame. The small-signal model (SSM) was tested on IEEE-9 bus system with VISMA replacing electromechanical synchronous machines on the network. To validate the developed numerical analytics, dynamic responses of the SSM are compared with those of the non-linear (NL) system dynamics and the results reveal that the developed linearized SSM is sufficient to accurately characterize behaviour of the VISMA microgrid when operated in autonomous mode. Eigenvalues analysis and parameter sensitivities of the critical modes were investigated. Oscillatory participations of the VISMAs and steady state stability limit of the microgrid have also been investigated.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13179\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13179\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13179","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,自主微电网缺乏适当的惯性和阻尼来实现电网稳定。因此,人们引入了虚拟同步机(VISMA),通过控制电力转换器来提供必要的辅助服务。在多 VISMA(n-VISMA)微电网中,电力系统的相对转子角稳定性取决于小扰动后的有功功率平衡。因此,使用相关的分析模型是微电网稳定性分析的关键问题。本文提出了一种全面的小信号稳定性分析方法,以研究虚拟转子中固有的机电振荡。由 VISMA、网络、负载和外部功率控制组成的微电网子系统均采用同步参考框架建模。小信号模型(SSM)在 IEEE-9 总线系统上进行了测试,VISMA 取代了网络上的机电同步机。为了验证所开发的数值分析方法,将 SSM 的动态响应与非线性(NL)系统动态响应进行了比较,结果表明所开发的线性化 SSM 足以准确描述 VISMA 微电网在自主模式下的运行特性。对临界模式的特征值分析和参数敏感性进行了研究。此外,还研究了 VISMA 的振荡参与和微电网的稳态稳定极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Small-signal rotor angle stability of multi-virtual synchronous machine (n-VISMA) microgrid

Autonomous microgrid is known to lack appropriate inertia and damping for grid stabilization. Due to this, virtual synchronous machine (VISMA) has been introduced to provide necessary ancillary services through control of power converters. In a multi-VISMA (n-VISMA) microgrid, relative rotor angle stability of the power system is dependent on the active power balance after small perturbation. Thus, the use of relevant analytical models are essential issues for microgrid stability analysis. This paper presents a comprehensive small-signal stability analysis to study inherent electromechanical oscillations in the virtual rotors. The subsystems of the microgrid consisting of VISMA, network, load and the outer power control were all modelled in Synchronous Reference Frame. The small-signal model (SSM) was tested on IEEE-9 bus system with VISMA replacing electromechanical synchronous machines on the network. To validate the developed numerical analytics, dynamic responses of the SSM are compared with those of the non-linear (NL) system dynamics and the results reveal that the developed linearized SSM is sufficient to accurately characterize behaviour of the VISMA microgrid when operated in autonomous mode. Eigenvalues analysis and parameter sensitivities of the critical modes were investigated. Oscillatory participations of the VISMAs and steady state stability limit of the microgrid have also been investigated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
期刊最新文献
Front Cover: Disturbance observer-based finite-time control of a photovoltaic-battery hybrid power system Security constrained optimal power shutoff for wildfire risk mitigation Disturbance observer-based finite-time control of a photovoltaic-battery hybrid power system Multi-agent reinforcement learning in a new transactive energy mechanism Optimized operation of integrated electricity-HCNG systems with distributed hydrogen injecting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1