{"title":"双机无等待链式逆向商店问题的新型高效算法","authors":"Nazim Sami, Karim Amrouche, Mourad Boudhar","doi":"10.1007/s10878-024-01180-4","DOIUrl":null,"url":null,"abstract":"<p>This paper tackles the two-machine chain-reentrant flow shop scheduling problem with the no-wait constraint; we assume that each job passes from the first machine to the second and returns back to the first machine in order to execute its last operation. The objective is to minimize the makespan. In this work, we prove that the symmetric case of this problem, which is proven to be <span>\\(\\mathcal NP\\)</span>-hard in the strong sense, remains <span>\\(\\mathcal NP\\)</span>-hard. Then we provide two polynomial subproblems. For the main problem’s resolution, we propose two new efficient heuristics as well as two improved lower bounds that consistently outperform the existing methods. Additionally, we provide an effective Branch & Bound algorithm that can solve up to 100 jobs for some types of instances. These contributions not only enhance the theoretical comprehension of the problem but also offer efficient solutions supported by extensive statistical analysis over randomly generated instances.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"7 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New efficient algorithms for the two-machine no-wait chain-reentrant shop problem\",\"authors\":\"Nazim Sami, Karim Amrouche, Mourad Boudhar\",\"doi\":\"10.1007/s10878-024-01180-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper tackles the two-machine chain-reentrant flow shop scheduling problem with the no-wait constraint; we assume that each job passes from the first machine to the second and returns back to the first machine in order to execute its last operation. The objective is to minimize the makespan. In this work, we prove that the symmetric case of this problem, which is proven to be <span>\\\\(\\\\mathcal NP\\\\)</span>-hard in the strong sense, remains <span>\\\\(\\\\mathcal NP\\\\)</span>-hard. Then we provide two polynomial subproblems. For the main problem’s resolution, we propose two new efficient heuristics as well as two improved lower bounds that consistently outperform the existing methods. Additionally, we provide an effective Branch & Bound algorithm that can solve up to 100 jobs for some types of instances. These contributions not only enhance the theoretical comprehension of the problem but also offer efficient solutions supported by extensive statistical analysis over randomly generated instances.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-024-01180-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01180-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
New efficient algorithms for the two-machine no-wait chain-reentrant shop problem
This paper tackles the two-machine chain-reentrant flow shop scheduling problem with the no-wait constraint; we assume that each job passes from the first machine to the second and returns back to the first machine in order to execute its last operation. The objective is to minimize the makespan. In this work, we prove that the symmetric case of this problem, which is proven to be \(\mathcal NP\)-hard in the strong sense, remains \(\mathcal NP\)-hard. Then we provide two polynomial subproblems. For the main problem’s resolution, we propose two new efficient heuristics as well as two improved lower bounds that consistently outperform the existing methods. Additionally, we provide an effective Branch & Bound algorithm that can solve up to 100 jobs for some types of instances. These contributions not only enhance the theoretical comprehension of the problem but also offer efficient solutions supported by extensive statistical analysis over randomly generated instances.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.