原子分散铂在二甲苯上辅助丙烷的 CO2 脱氢反应

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-06-12 DOI:10.1021/acscatal.4c01473
Changqing Chu, Baoyu Chen, Yan He*, Guiyuan Jiang, Xingying Lan*, Shenggang Li*, Changning Wu and Daofan Cao, 
{"title":"原子分散铂在二甲苯上辅助丙烷的 CO2 脱氢反应","authors":"Changqing Chu,&nbsp;Baoyu Chen,&nbsp;Yan He*,&nbsp;Guiyuan Jiang,&nbsp;Xingying Lan*,&nbsp;Shenggang Li*,&nbsp;Changning Wu and Daofan Cao,&nbsp;","doi":"10.1021/acscatal.4c01473","DOIUrl":null,"url":null,"abstract":"<p >The catalytic mechanism and performance of MXene-supported atomically dispersed Pt (Pt<sub>1</sub>@MXene) in CO<sub>2</sub>-assisted propane oxidative dehydrogenation (CO<sub>2</sub>-ODHP) was evaluated by density functional theory (DFT) calculations and microkinetic simulations. The Pt single atom (Pt SA) site can promote the cleavage of two C–H bonds in propane to yield propylene via direct dehydrogenation of propane (DDHP), whereas the Pt–MXene interface facilitates the cleavage of the C–O bond in CO<sub>2</sub> and the hydrogenation of O* to H<sub>2</sub>O via the reverse water gas shift (RWGS). Degree of rate control and Brönsted–Evans–Polanyi (BEP) correlation analyses revealed that the binding strength of Pt toward C<sub>3</sub>H<sub>7</sub>* and that of MXene toward O* determined the DDHP and RWGS activities, respectively. The DDHP activity is also highly correlated with the d-band center of the Pt SA and the work function of the Pt<sub>1</sub>@MXene surface. Microkinetic simulations showed that the Pt SA anchored on Mo<sub>2</sub>CO<sub>2</sub> and W<sub>2</sub>CO<sub>2</sub> possessed superior DDHP activity than the Pt(111) surface, although only Pt<sub>1</sub>@Mo<sub>2</sub>CO<sub>2</sub> presented high activities in both DDHP and RWGS. Furthermore, the high energy barriers of deep dehydrogenations and C–C cracking of C<sub>3</sub> derivatives over Pt<sub>1</sub>@Mo<sub>2</sub>CO<sub>2</sub> evidenced its high anticoking ability. These predictions suggest Pt<sub>1</sub>@Mo<sub>2</sub>CO<sub>2</sub> as a promising CO<sub>2</sub>-ODHP catalyst.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO2-Assisted Dehydrogenation of Propane by Atomically Dispersed Pt on MXenes\",\"authors\":\"Changqing Chu,&nbsp;Baoyu Chen,&nbsp;Yan He*,&nbsp;Guiyuan Jiang,&nbsp;Xingying Lan*,&nbsp;Shenggang Li*,&nbsp;Changning Wu and Daofan Cao,&nbsp;\",\"doi\":\"10.1021/acscatal.4c01473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The catalytic mechanism and performance of MXene-supported atomically dispersed Pt (Pt<sub>1</sub>@MXene) in CO<sub>2</sub>-assisted propane oxidative dehydrogenation (CO<sub>2</sub>-ODHP) was evaluated by density functional theory (DFT) calculations and microkinetic simulations. The Pt single atom (Pt SA) site can promote the cleavage of two C–H bonds in propane to yield propylene via direct dehydrogenation of propane (DDHP), whereas the Pt–MXene interface facilitates the cleavage of the C–O bond in CO<sub>2</sub> and the hydrogenation of O* to H<sub>2</sub>O via the reverse water gas shift (RWGS). Degree of rate control and Brönsted–Evans–Polanyi (BEP) correlation analyses revealed that the binding strength of Pt toward C<sub>3</sub>H<sub>7</sub>* and that of MXene toward O* determined the DDHP and RWGS activities, respectively. The DDHP activity is also highly correlated with the d-band center of the Pt SA and the work function of the Pt<sub>1</sub>@MXene surface. Microkinetic simulations showed that the Pt SA anchored on Mo<sub>2</sub>CO<sub>2</sub> and W<sub>2</sub>CO<sub>2</sub> possessed superior DDHP activity than the Pt(111) surface, although only Pt<sub>1</sub>@Mo<sub>2</sub>CO<sub>2</sub> presented high activities in both DDHP and RWGS. Furthermore, the high energy barriers of deep dehydrogenations and C–C cracking of C<sub>3</sub> derivatives over Pt<sub>1</sub>@Mo<sub>2</sub>CO<sub>2</sub> evidenced its high anticoking ability. These predictions suggest Pt<sub>1</sub>@Mo<sub>2</sub>CO<sub>2</sub> as a promising CO<sub>2</sub>-ODHP catalyst.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.4c01473\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c01473","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过密度泛函理论(DFT)计算和微动力学模拟,评估了MXene支撑的原子分散铂(Pt1@MXene)在二氧化碳辅助丙烷氧化脱氢(CO2-ODHP)中的催化机理和性能。铂单原子(Pt SA)位点可促进丙烷中两个 C-H 键的裂解,从而通过丙烷直接脱氢(DDHP)生成丙烯,而铂-甲苯界面则可促进 CO2 中 C-O 键的裂解,并通过反向水气转换(RWGS)将 O* 加氢为 H2O。速率控制程度和布伦斯特-埃文斯-波兰尼(BEP)相关性分析表明,铂与 C3H7* 的结合强度和 MXene 与 O* 的结合强度分别决定了 DDHP 和 RWGS 的活性。DDHP 活性还与 Pt SA 的 d 波段中心和 Pt1@MXene 表面的功函数高度相关。微动力学模拟显示,与 Pt(111)表面相比,锚定在 Mo2CO2 和 W2CO2 上的 Pt SA 具有更高的 DDHP 活性,但只有 Pt1@Mo2CO2 在 DDHP 和 RWGS 方面都表现出较高的活性。此外,Pt1@Mo2CO2 上 C3 衍生物深度脱氢和 C-C 裂解的高能垒证明了其高抗焦能力。这些预测表明 Pt1@Mo2CO2 是一种很有前途的 CO2-ODHP 催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CO2-Assisted Dehydrogenation of Propane by Atomically Dispersed Pt on MXenes

The catalytic mechanism and performance of MXene-supported atomically dispersed Pt (Pt1@MXene) in CO2-assisted propane oxidative dehydrogenation (CO2-ODHP) was evaluated by density functional theory (DFT) calculations and microkinetic simulations. The Pt single atom (Pt SA) site can promote the cleavage of two C–H bonds in propane to yield propylene via direct dehydrogenation of propane (DDHP), whereas the Pt–MXene interface facilitates the cleavage of the C–O bond in CO2 and the hydrogenation of O* to H2O via the reverse water gas shift (RWGS). Degree of rate control and Brönsted–Evans–Polanyi (BEP) correlation analyses revealed that the binding strength of Pt toward C3H7* and that of MXene toward O* determined the DDHP and RWGS activities, respectively. The DDHP activity is also highly correlated with the d-band center of the Pt SA and the work function of the Pt1@MXene surface. Microkinetic simulations showed that the Pt SA anchored on Mo2CO2 and W2CO2 possessed superior DDHP activity than the Pt(111) surface, although only Pt1@Mo2CO2 presented high activities in both DDHP and RWGS. Furthermore, the high energy barriers of deep dehydrogenations and C–C cracking of C3 derivatives over Pt1@Mo2CO2 evidenced its high anticoking ability. These predictions suggest Pt1@Mo2CO2 as a promising CO2-ODHP catalyst.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Reversing the Selectivity of Alkanes and Alkenes in Iron-Based Fischer–Tropsch Synthesis: The Precise Control and Fundamental Role of Sodium Promotor Ligand-Enabled, Cysteine-Directed β-C(sp3)–H Arylation of Alanine in Linear and Cyclic Peptides: Overcoming the Inhibitory Effect of Peptide Bonds Correction to “Photochemical Reductive Carboxylation of N-Benzoyl Imines with Oxalate Accelerated by Formation of EDA Complexes” Simulation-Guided Engineering Enables a Functional Switch in Selinadiene Synthase toward Hydroxylation Capture-Intensified Electrocatalytic Reduction of Postcombustion CO2 in Transporting and Catalytic Channels of Covalent Organic Frameworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1