通过凝胶聚合物电解质中的偶极-偶极化学打破磷酸盐的溶解优势

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-06-14 DOI:10.1021/acsenergylett.4c00843
Xiaozhi Jiang, Fangyan Liu, Maohui Bai*, Long Chen, Mengran Wang, Kun Zhang*, Jiayi Yang*, Bo Hong*, Yang Ren, Yanqing Lai and Jie Li, 
{"title":"通过凝胶聚合物电解质中的偶极-偶极化学打破磷酸盐的溶解优势","authors":"Xiaozhi Jiang,&nbsp;Fangyan Liu,&nbsp;Maohui Bai*,&nbsp;Long Chen,&nbsp;Mengran Wang,&nbsp;Kun Zhang*,&nbsp;Jiayi Yang*,&nbsp;Bo Hong*,&nbsp;Yang Ren,&nbsp;Yanqing Lai and Jie Li,&nbsp;","doi":"10.1021/acsenergylett.4c00843","DOIUrl":null,"url":null,"abstract":"<p >A prevalent method to bolster the safety of lithium-ion batteries (LIBs) is through the deployment of phosphate-based electrolytes. Nonetheless, an intrinsic challenge arises from the incompatibility between phosphate components and graphite anodes, a phenomenon known as coinsertion. To tackle this obstacle, we introduce a comprehensive strategy that employs in situ thermal polymerization, leveraging a flame-retardant solvent and a polymer matrix. This approach fosters strong dipole–dipole interactions between phosphate molecules and the polymer matrix, effectively alleviating the adverse impacts on graphite anodes. This significant enhancement is validated through in situ X-ray diffraction, X-ray photoelectron spectroscopy depth profile analysis, and transmission electron microscopy imaging. Our methodology facilitated stable lithium-ion operations within electrolytes comprising 20% phosphate components in assembled NCM811|P-GPE|Gr pouch cells, achieving a low-capacity decay rate of 0.0023% per cycle with good flame-retardant characteristics. We believe this strategy heralds new commercial prospects for incorporating phosphate-based solvents in the creation of exceptionally safe LIBs.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking Solvation Dominance of Phosphate via Dipole–Dipole Chemistry in Gel Polymer Electrolyte\",\"authors\":\"Xiaozhi Jiang,&nbsp;Fangyan Liu,&nbsp;Maohui Bai*,&nbsp;Long Chen,&nbsp;Mengran Wang,&nbsp;Kun Zhang*,&nbsp;Jiayi Yang*,&nbsp;Bo Hong*,&nbsp;Yang Ren,&nbsp;Yanqing Lai and Jie Li,&nbsp;\",\"doi\":\"10.1021/acsenergylett.4c00843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A prevalent method to bolster the safety of lithium-ion batteries (LIBs) is through the deployment of phosphate-based electrolytes. Nonetheless, an intrinsic challenge arises from the incompatibility between phosphate components and graphite anodes, a phenomenon known as coinsertion. To tackle this obstacle, we introduce a comprehensive strategy that employs in situ thermal polymerization, leveraging a flame-retardant solvent and a polymer matrix. This approach fosters strong dipole–dipole interactions between phosphate molecules and the polymer matrix, effectively alleviating the adverse impacts on graphite anodes. This significant enhancement is validated through in situ X-ray diffraction, X-ray photoelectron spectroscopy depth profile analysis, and transmission electron microscopy imaging. Our methodology facilitated stable lithium-ion operations within electrolytes comprising 20% phosphate components in assembled NCM811|P-GPE|Gr pouch cells, achieving a low-capacity decay rate of 0.0023% per cycle with good flame-retardant characteristics. We believe this strategy heralds new commercial prospects for incorporating phosphate-based solvents in the creation of exceptionally safe LIBs.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.4c00843\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c00843","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

提高锂离子电池(LIB)安全性的普遍方法是采用磷酸盐电解质。然而,磷酸盐成分与石墨阳极之间的不相容性(一种被称为 "共沉 "的现象)带来了固有的挑战。为了解决这一障碍,我们引入了一种综合策略,利用阻燃溶剂和聚合物基质,采用原位热聚合。这种方法促进了磷酸盐分子与聚合物基质之间强烈的偶极-偶极相互作用,有效减轻了对石墨阳极的不利影响。我们通过原位 X 射线衍射、X 射线光电子能谱深度剖面分析和透射电子显微镜成像验证了这一重大改进。我们的方法促进了 NCM811|P-GPE|Gr 袋装电池在含 20% 磷酸盐成分的电解液中的锂离子稳定运行,实现了每周期 0.0023% 的低容量衰减率和良好的阻燃特性。我们相信,这一策略预示着将磷酸盐基溶剂用于制造非常安全的 LIB 的新商业前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Breaking Solvation Dominance of Phosphate via Dipole–Dipole Chemistry in Gel Polymer Electrolyte

A prevalent method to bolster the safety of lithium-ion batteries (LIBs) is through the deployment of phosphate-based electrolytes. Nonetheless, an intrinsic challenge arises from the incompatibility between phosphate components and graphite anodes, a phenomenon known as coinsertion. To tackle this obstacle, we introduce a comprehensive strategy that employs in situ thermal polymerization, leveraging a flame-retardant solvent and a polymer matrix. This approach fosters strong dipole–dipole interactions between phosphate molecules and the polymer matrix, effectively alleviating the adverse impacts on graphite anodes. This significant enhancement is validated through in situ X-ray diffraction, X-ray photoelectron spectroscopy depth profile analysis, and transmission electron microscopy imaging. Our methodology facilitated stable lithium-ion operations within electrolytes comprising 20% phosphate components in assembled NCM811|P-GPE|Gr pouch cells, achieving a low-capacity decay rate of 0.0023% per cycle with good flame-retardant characteristics. We believe this strategy heralds new commercial prospects for incorporating phosphate-based solvents in the creation of exceptionally safe LIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Digital Twin Battery Modeling and Simulations: A New Analysis and Design Tool for Rechargeable Batteries Generative Design and Experimental Validation of Non-Fullerene Acceptors for Photovoltaics Rational Third Component Choices Drive Enhanced Morphology and Efficiency in Ternary Blend Organic Solar Cells Origins of Nanoalloy Catalysts Degradation during Membrane Electrode Assembly Fabrication Correction to “Multicomponent Approach for Stable Methylammonium-Free Tin–Lead Perovskite Solar Cells”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1