Ameer Dharamshi, Anna Neufeld, Keshav Motwani, Lucy L. Gao, Daniela Witten, Jacob Bien
{"title":"利用充分统计进行广义数据稀释","authors":"Ameer Dharamshi, Anna Neufeld, Keshav Motwani, Lucy L. Gao, Daniela Witten, Jacob Bien","doi":"10.1080/01621459.2024.2353948","DOIUrl":null,"url":null,"abstract":"Our goal is to develop a general strategy to decompose a random variable X into multiple independent random variables, without sacrificing any information about unknown parameters. A recent paper s...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"52 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Data Thinning Using Sufficient Statistics\",\"authors\":\"Ameer Dharamshi, Anna Neufeld, Keshav Motwani, Lucy L. Gao, Daniela Witten, Jacob Bien\",\"doi\":\"10.1080/01621459.2024.2353948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our goal is to develop a general strategy to decompose a random variable X into multiple independent random variables, without sacrificing any information about unknown parameters. A recent paper s...\",\"PeriodicalId\":17227,\"journal\":{\"name\":\"Journal of the American Statistical Association\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Statistical Association\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/01621459.2024.2353948\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Statistical Association","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01621459.2024.2353948","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
我们的目标是在不牺牲任何未知参数信息的情况下,开发一种将随机变量 X 分解为多个独立随机变量的通用策略。最近的一篇论文指出了这一点。
Generalized Data Thinning Using Sufficient Statistics
Our goal is to develop a general strategy to decompose a random variable X into multiple independent random variables, without sacrificing any information about unknown parameters. A recent paper s...
期刊介绍:
Established in 1888 and published quarterly in March, June, September, and December, the Journal of the American Statistical Association ( JASA ) has long been considered the premier journal of statistical science. Articles focus on statistical applications, theory, and methods in economic, social, physical, engineering, and health sciences. Important books contributing to statistical advancement are reviewed in JASA .
JASA is indexed in Current Index to Statistics and MathSci Online and reviewed in Mathematical Reviews. JASA is abstracted by Access Company and is indexed and abstracted in the SRM Database of Social Research Methodology.