Bing Shao, Prof. Dr. Du Huang, Dr. Rui-Kang Huang, Xing-Lu He, Yan Luo, Yi-Lei Xiang, Prof. Dr. Lin-bin Jiang, Prof. Dr. Min Dong, Prof. Dr. Shixiong Li, Prof. Dr. Zhong Zhang, Prof. Dr. Jin Huang
{"title":"用于高选择性二氧化碳电还原成乙醇的金属有机框架支撑低核团簇催化剂。","authors":"Bing Shao, Prof. Dr. Du Huang, Dr. Rui-Kang Huang, Xing-Lu He, Yan Luo, Yi-Lei Xiang, Prof. Dr. Lin-bin Jiang, Prof. Dr. Min Dong, Prof. Dr. Shixiong Li, Prof. Dr. Zhong Zhang, Prof. Dr. Jin Huang","doi":"10.1002/anie.202409270","DOIUrl":null,"url":null,"abstract":"<p>It is still a great challenge to achieve high selectivity of ethanol in CO<sub>2</sub> electroreduction reactions (CO<sub>2</sub>RR) because of the similar reduction potentials and lower energy barrier of possible other C<sub>2+</sub> products. Here, we report a MOF-based supported low-nuclearity cluster catalysts (LNCCs), synthesized by electrochemical reduction of three-dimensional (3D) microporous Cu-based MOF, that achieves a single-product Faradaic efficiency (FE) of 82.5 % at −1.0 V (versus the reversible hydrogen electrode) corresponding to the effective current density is 8.66 mA cm<sup>−2</sup>. By investigating the relationship between the species of reduction products and the types of catalytic sites, it is confirmed that the multi-site synergism of Cu LNCCs can increase the C−C coupling effect, and thus achieve high FE of CO<sub>2</sub>–to–ethanol. In addition, density functional theory (DFT) calculation and operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy further confirmed the reaction path and mechanism of CO<sub>2</sub>–to–EtOH.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal–Organic Framework Supported Low-Nuclearity Cluster Catalysts for Highly Selective Carbon Dioxide Electroreduction to Ethanol\",\"authors\":\"Bing Shao, Prof. Dr. Du Huang, Dr. Rui-Kang Huang, Xing-Lu He, Yan Luo, Yi-Lei Xiang, Prof. Dr. Lin-bin Jiang, Prof. Dr. Min Dong, Prof. Dr. Shixiong Li, Prof. Dr. Zhong Zhang, Prof. Dr. Jin Huang\",\"doi\":\"10.1002/anie.202409270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is still a great challenge to achieve high selectivity of ethanol in CO<sub>2</sub> electroreduction reactions (CO<sub>2</sub>RR) because of the similar reduction potentials and lower energy barrier of possible other C<sub>2+</sub> products. Here, we report a MOF-based supported low-nuclearity cluster catalysts (LNCCs), synthesized by electrochemical reduction of three-dimensional (3D) microporous Cu-based MOF, that achieves a single-product Faradaic efficiency (FE) of 82.5 % at −1.0 V (versus the reversible hydrogen electrode) corresponding to the effective current density is 8.66 mA cm<sup>−2</sup>. By investigating the relationship between the species of reduction products and the types of catalytic sites, it is confirmed that the multi-site synergism of Cu LNCCs can increase the C−C coupling effect, and thus achieve high FE of CO<sub>2</sub>–to–ethanol. In addition, density functional theory (DFT) calculation and operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy further confirmed the reaction path and mechanism of CO<sub>2</sub>–to–EtOH.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202409270\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202409270","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在二氧化碳电还原反应(CO2RR)中,由于其他可能的 C2+ 产物具有相似的还原电位和较低的能障,因此要实现乙醇的高选择性仍然是一个巨大的挑战。在此,我们报告了一种通过电化学还原三维(3D)微孔铜基 MOF 而合成的基于 MOF 的支撑型低核度团簇催化剂(LNCCs),该催化剂在-1.0 V(相对于可逆氢电极)的有效电流密度为 8.66 mA cm-2 时,单产物法拉第效率(FE)达到 82.5%。通过研究还原产物的种类与催化位点类型之间的关系,证实了 Cu LNCCs 的多位点协同作用可增加 C-C 耦合效应,从而实现 CO2 转化乙醇的高 FE。此外,密度泛函理论(DFT)计算和操作衰减全反射表面增强红外吸收光谱进一步证实了 CO2 转化为乙醇的反应路径和机理。
Metal–Organic Framework Supported Low-Nuclearity Cluster Catalysts for Highly Selective Carbon Dioxide Electroreduction to Ethanol
It is still a great challenge to achieve high selectivity of ethanol in CO2 electroreduction reactions (CO2RR) because of the similar reduction potentials and lower energy barrier of possible other C2+ products. Here, we report a MOF-based supported low-nuclearity cluster catalysts (LNCCs), synthesized by electrochemical reduction of three-dimensional (3D) microporous Cu-based MOF, that achieves a single-product Faradaic efficiency (FE) of 82.5 % at −1.0 V (versus the reversible hydrogen electrode) corresponding to the effective current density is 8.66 mA cm−2. By investigating the relationship between the species of reduction products and the types of catalytic sites, it is confirmed that the multi-site synergism of Cu LNCCs can increase the C−C coupling effect, and thus achieve high FE of CO2–to–ethanol. In addition, density functional theory (DFT) calculation and operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy further confirmed the reaction path and mechanism of CO2–to–EtOH.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.