在治疗脑转移瘤的单中心 VMAT 中,基于肿瘤数学模型和微剂量测定动力学模型评估肿瘤体积缩小情况,并考虑设置误差。

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Physical and Engineering Sciences in Medicine Pub Date : 2024-12-01 Epub Date: 2024-06-17 DOI:10.1007/s13246-024-01451-8
Hisashi Nakano, Takehiro Shiinoki, Satoshi Tanabe, Satoru Utsunomiya, Motoki Kaidu, Teiji Nishio, Hiroyuki Ishikawa
{"title":"在治疗脑转移瘤的单中心 VMAT 中,基于肿瘤数学模型和微剂量测定动力学模型评估肿瘤体积缩小情况,并考虑设置误差。","authors":"Hisashi Nakano, Takehiro Shiinoki, Satoshi Tanabe, Satoru Utsunomiya, Motoki Kaidu, Teiji Nishio, Hiroyuki Ishikawa","doi":"10.1007/s13246-024-01451-8","DOIUrl":null,"url":null,"abstract":"<p><p>The volumetric reduction rate (VRR) was evaluated with consideration for six degrees-of-freedom (6DoF) patient setup errors based on a mathematical tumor model in single-isocenter volumetric modulated arc therapy (SI-VMAT) for brain metastases. Simulated gross tumor volumes (GTV) of 1.0 cm and dose distribution were created (27 Gy/3 fractions). The distance between the GTV center and isocenter (d) was set at 0-10 cm. The GTV was translated within 0-1.0 mm (Trans) and rotated within 0-1.0° (Rot) in the three axis directions using affine transformation. The tumor growth volume was calculated using a multicomponent mathematical model (MCTM), and lethal effects of irradiation and repair from damage during irradiation were calculated by a microdosimetric kinetic model (MKM) for non-small cell lung cancer (NSCLC) A549 and NCI-H460 (H460) cells. The VRRs were calculated 5 days after the end of irradiation using the physical dose to the GTV for varying d and 6DoF setup errors. The tolerance value of VRR, the GTV volume reduction rate, was set at 5%, based on the pre-irradiation GTV volume. With the exception of the only one A549 condition where (Trans, Rot) = (1.0 mm, 1.0°) was repeated for 3 fractions, all conditions met all the tolerance VRR values for A549 and H460 cells with varying d from 0 to 10 cm. Evaluation based on the mathematical tumor model suggested that if the 6DoF setup errors at each irradiation could be kept within 1.0 mm and 1.0°, there would be little effect on tumor volume regardless of the distance from the isocenter in SI-VMAT.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1385-1396"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing tumor volumetric reduction with consideration for setup errors based on mathematical tumor model and microdosimetric kinetic model in single-isocenter VMAT for brain metastases.\",\"authors\":\"Hisashi Nakano, Takehiro Shiinoki, Satoshi Tanabe, Satoru Utsunomiya, Motoki Kaidu, Teiji Nishio, Hiroyuki Ishikawa\",\"doi\":\"10.1007/s13246-024-01451-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The volumetric reduction rate (VRR) was evaluated with consideration for six degrees-of-freedom (6DoF) patient setup errors based on a mathematical tumor model in single-isocenter volumetric modulated arc therapy (SI-VMAT) for brain metastases. Simulated gross tumor volumes (GTV) of 1.0 cm and dose distribution were created (27 Gy/3 fractions). The distance between the GTV center and isocenter (d) was set at 0-10 cm. The GTV was translated within 0-1.0 mm (Trans) and rotated within 0-1.0° (Rot) in the three axis directions using affine transformation. The tumor growth volume was calculated using a multicomponent mathematical model (MCTM), and lethal effects of irradiation and repair from damage during irradiation were calculated by a microdosimetric kinetic model (MKM) for non-small cell lung cancer (NSCLC) A549 and NCI-H460 (H460) cells. The VRRs were calculated 5 days after the end of irradiation using the physical dose to the GTV for varying d and 6DoF setup errors. The tolerance value of VRR, the GTV volume reduction rate, was set at 5%, based on the pre-irradiation GTV volume. With the exception of the only one A549 condition where (Trans, Rot) = (1.0 mm, 1.0°) was repeated for 3 fractions, all conditions met all the tolerance VRR values for A549 and H460 cells with varying d from 0 to 10 cm. Evaluation based on the mathematical tumor model suggested that if the 6DoF setup errors at each irradiation could be kept within 1.0 mm and 1.0°, there would be little effect on tumor volume regardless of the distance from the isocenter in SI-VMAT.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"1385-1396\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-024-01451-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01451-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在单中心容积调制弧形疗法(SI-VMAT)治疗脑转移瘤的数学肿瘤模型基础上,考虑到六自由度(6DoF)患者设置误差,对容积缩小率(VRR)进行了评估。模拟的肿瘤总体积(GTV)为 1.0 厘米,剂量分布为 27 Gy/3 次分量。GTV 中心与等中心(d)之间的距离设定为 0-10 厘米。使用仿射变换法将 GTV 在三个轴方向上平移 0-1.0 mm (Trans),旋转 0-1.0° (Rot)。对非小细胞肺癌(NSCLC)A549和NCI-H460(H460)细胞,使用多组分数学模型(MCTM)计算肿瘤生长体积,并使用微剂量动力学模型(MKM)计算辐照致死效应和辐照过程中的损伤修复。在不同的d和6DoF设置误差下,使用GTV的物理剂量计算照射结束5天后的VRR。根据辐照前的 GTV 体积,将 VRR(GTV 体积缩小率)的容许值设定为 5%。除了只有一个 A549 条件(Trans, Rot = (1.0 mm, 1.0°))重复了 3 次分次外,所有条件下的 A549 和 H460 细胞都达到了所有容许 VRR 值,d 值从 0 到 10 cm 不等。根据肿瘤数学模型进行的评估表明,如果每次照射时的 6DoF 设置误差能保持在 1.0 毫米和 1.0° 以内,那么无论 SI-VMAT 中与等中心的距离如何,对肿瘤体积的影响都很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing tumor volumetric reduction with consideration for setup errors based on mathematical tumor model and microdosimetric kinetic model in single-isocenter VMAT for brain metastases.

The volumetric reduction rate (VRR) was evaluated with consideration for six degrees-of-freedom (6DoF) patient setup errors based on a mathematical tumor model in single-isocenter volumetric modulated arc therapy (SI-VMAT) for brain metastases. Simulated gross tumor volumes (GTV) of 1.0 cm and dose distribution were created (27 Gy/3 fractions). The distance between the GTV center and isocenter (d) was set at 0-10 cm. The GTV was translated within 0-1.0 mm (Trans) and rotated within 0-1.0° (Rot) in the three axis directions using affine transformation. The tumor growth volume was calculated using a multicomponent mathematical model (MCTM), and lethal effects of irradiation and repair from damage during irradiation were calculated by a microdosimetric kinetic model (MKM) for non-small cell lung cancer (NSCLC) A549 and NCI-H460 (H460) cells. The VRRs were calculated 5 days after the end of irradiation using the physical dose to the GTV for varying d and 6DoF setup errors. The tolerance value of VRR, the GTV volume reduction rate, was set at 5%, based on the pre-irradiation GTV volume. With the exception of the only one A549 condition where (Trans, Rot) = (1.0 mm, 1.0°) was repeated for 3 fractions, all conditions met all the tolerance VRR values for A549 and H460 cells with varying d from 0 to 10 cm. Evaluation based on the mathematical tumor model suggested that if the 6DoF setup errors at each irradiation could be kept within 1.0 mm and 1.0°, there would be little effect on tumor volume regardless of the distance from the isocenter in SI-VMAT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
期刊最新文献
Use of a virtual phantom to assess the capability of a treatment planning system to perform magnetic resonance image distortion correction. [113mIn]In-RM2: a high potential agent for SPECT imaging of GRPR-expressing tumors. Enhancing percutaneous coronary intervention using TriVOCTNet: a multi-task deep learning model for comprehensive intravascular optical coherence tomography analysis. Memory enhancement by transcranial radiofrequency wave treatment occurs without appreciably increasing brain temperature. SchizoLMNet: a modified lightweight MobileNetV2- architecture for automated schizophrenia detection using EEG-derived spectrograms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1