{"title":"在治疗脑转移瘤的单中心 VMAT 中,基于肿瘤数学模型和微剂量测定动力学模型评估肿瘤体积缩小情况,并考虑设置误差。","authors":"Hisashi Nakano, Takehiro Shiinoki, Satoshi Tanabe, Satoru Utsunomiya, Motoki Kaidu, Teiji Nishio, Hiroyuki Ishikawa","doi":"10.1007/s13246-024-01451-8","DOIUrl":null,"url":null,"abstract":"<p><p>The volumetric reduction rate (VRR) was evaluated with consideration for six degrees-of-freedom (6DoF) patient setup errors based on a mathematical tumor model in single-isocenter volumetric modulated arc therapy (SI-VMAT) for brain metastases. Simulated gross tumor volumes (GTV) of 1.0 cm and dose distribution were created (27 Gy/3 fractions). The distance between the GTV center and isocenter (d) was set at 0-10 cm. The GTV was translated within 0-1.0 mm (Trans) and rotated within 0-1.0° (Rot) in the three axis directions using affine transformation. The tumor growth volume was calculated using a multicomponent mathematical model (MCTM), and lethal effects of irradiation and repair from damage during irradiation were calculated by a microdosimetric kinetic model (MKM) for non-small cell lung cancer (NSCLC) A549 and NCI-H460 (H460) cells. The VRRs were calculated 5 days after the end of irradiation using the physical dose to the GTV for varying d and 6DoF setup errors. The tolerance value of VRR, the GTV volume reduction rate, was set at 5%, based on the pre-irradiation GTV volume. With the exception of the only one A549 condition where (Trans, Rot) = (1.0 mm, 1.0°) was repeated for 3 fractions, all conditions met all the tolerance VRR values for A549 and H460 cells with varying d from 0 to 10 cm. Evaluation based on the mathematical tumor model suggested that if the 6DoF setup errors at each irradiation could be kept within 1.0 mm and 1.0°, there would be little effect on tumor volume regardless of the distance from the isocenter in SI-VMAT.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1385-1396"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing tumor volumetric reduction with consideration for setup errors based on mathematical tumor model and microdosimetric kinetic model in single-isocenter VMAT for brain metastases.\",\"authors\":\"Hisashi Nakano, Takehiro Shiinoki, Satoshi Tanabe, Satoru Utsunomiya, Motoki Kaidu, Teiji Nishio, Hiroyuki Ishikawa\",\"doi\":\"10.1007/s13246-024-01451-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The volumetric reduction rate (VRR) was evaluated with consideration for six degrees-of-freedom (6DoF) patient setup errors based on a mathematical tumor model in single-isocenter volumetric modulated arc therapy (SI-VMAT) for brain metastases. Simulated gross tumor volumes (GTV) of 1.0 cm and dose distribution were created (27 Gy/3 fractions). The distance between the GTV center and isocenter (d) was set at 0-10 cm. The GTV was translated within 0-1.0 mm (Trans) and rotated within 0-1.0° (Rot) in the three axis directions using affine transformation. The tumor growth volume was calculated using a multicomponent mathematical model (MCTM), and lethal effects of irradiation and repair from damage during irradiation were calculated by a microdosimetric kinetic model (MKM) for non-small cell lung cancer (NSCLC) A549 and NCI-H460 (H460) cells. The VRRs were calculated 5 days after the end of irradiation using the physical dose to the GTV for varying d and 6DoF setup errors. The tolerance value of VRR, the GTV volume reduction rate, was set at 5%, based on the pre-irradiation GTV volume. With the exception of the only one A549 condition where (Trans, Rot) = (1.0 mm, 1.0°) was repeated for 3 fractions, all conditions met all the tolerance VRR values for A549 and H460 cells with varying d from 0 to 10 cm. Evaluation based on the mathematical tumor model suggested that if the 6DoF setup errors at each irradiation could be kept within 1.0 mm and 1.0°, there would be little effect on tumor volume regardless of the distance from the isocenter in SI-VMAT.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"1385-1396\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-024-01451-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01451-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Assessing tumor volumetric reduction with consideration for setup errors based on mathematical tumor model and microdosimetric kinetic model in single-isocenter VMAT for brain metastases.
The volumetric reduction rate (VRR) was evaluated with consideration for six degrees-of-freedom (6DoF) patient setup errors based on a mathematical tumor model in single-isocenter volumetric modulated arc therapy (SI-VMAT) for brain metastases. Simulated gross tumor volumes (GTV) of 1.0 cm and dose distribution were created (27 Gy/3 fractions). The distance between the GTV center and isocenter (d) was set at 0-10 cm. The GTV was translated within 0-1.0 mm (Trans) and rotated within 0-1.0° (Rot) in the three axis directions using affine transformation. The tumor growth volume was calculated using a multicomponent mathematical model (MCTM), and lethal effects of irradiation and repair from damage during irradiation were calculated by a microdosimetric kinetic model (MKM) for non-small cell lung cancer (NSCLC) A549 and NCI-H460 (H460) cells. The VRRs were calculated 5 days after the end of irradiation using the physical dose to the GTV for varying d and 6DoF setup errors. The tolerance value of VRR, the GTV volume reduction rate, was set at 5%, based on the pre-irradiation GTV volume. With the exception of the only one A549 condition where (Trans, Rot) = (1.0 mm, 1.0°) was repeated for 3 fractions, all conditions met all the tolerance VRR values for A549 and H460 cells with varying d from 0 to 10 cm. Evaluation based on the mathematical tumor model suggested that if the 6DoF setup errors at each irradiation could be kept within 1.0 mm and 1.0°, there would be little effect on tumor volume regardless of the distance from the isocenter in SI-VMAT.