用于研究肺泡粘膜免疫反应的免疫能力芯片肺泡模型

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Jove-Journal of Visualized Experiments Pub Date : 2024-05-31 DOI:10.3791/66602
Hristina Koceva, Mona Amiratashani, Knut Rennert, Alexander S Mosig
{"title":"用于研究肺泡粘膜免疫反应的免疫能力芯片肺泡模型","authors":"Hristina Koceva, Mona Amiratashani, Knut Rennert, Alexander S Mosig","doi":"10.3791/66602","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce an advanced immunocompetent lung-on-chip model designed to replicate the human alveolar structure and function. This innovative model employs a microfluidic-perfused biochip that supports an air-liquid interface mimicking the environment in the human alveoli. Tissue engineering is used to integrate key cellular components, including endothelial cells, macrophages, and epithelial cells, to create a representative tissue model of the alveolus. The model facilitates in-depth examinations of the mucosal immune responses to various pathogens, including viruses, bacteria, and fungi, thereby advancing our understanding of lung immunity. The primary goal of this protocol is to provide details for establishing this alveolus-on-chip model as a robust in vitro platform for infection studies, enabling researchers to closely observe and analyze the complex interactions between pathogens and the host's immune system within the pulmonary environment. This is achieved through the application of microfluidic-based techniques to simulate key physiological conditions of the human alveoli, including blood flow and biomechanical stimulation of endothelial cells, alongside maintaining an air-liquid interface crucial for the realistic exposure of epithelial cells to air. The model system is compatible with a range of standardized assays, such as immunofluorescence staining, cytokine profiling, and colony-forming unit (CFU)/plaque analysis, allowing for comprehensive insights into immune dynamics during infection. The Alveolus-on-chip is composed of essential cell types, including human distal lung epithelial cells (H441) and human umbilical vein endothelial cells (HUVECs) separated by porous polyethylene terephthalate (PET) membranes, with primary monocyte-derived macrophages strategically positioned between the epithelial and endothelial layers. The tissue model enhances the ability to dissect and analyze the nuanced factors involved in pulmonary immune responses in vitro. As a valuable tool, it should contribute to the advancement of lung research, providing a more accurate and dynamic in vitro model for studying the pathogenesis of respiratory infections and testing potential therapeutic interventions.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunocompetent Alveolus-on-Chip Model for Studying Alveolar Mucosal Immune Responses.\",\"authors\":\"Hristina Koceva, Mona Amiratashani, Knut Rennert, Alexander S Mosig\",\"doi\":\"10.3791/66602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce an advanced immunocompetent lung-on-chip model designed to replicate the human alveolar structure and function. This innovative model employs a microfluidic-perfused biochip that supports an air-liquid interface mimicking the environment in the human alveoli. Tissue engineering is used to integrate key cellular components, including endothelial cells, macrophages, and epithelial cells, to create a representative tissue model of the alveolus. The model facilitates in-depth examinations of the mucosal immune responses to various pathogens, including viruses, bacteria, and fungi, thereby advancing our understanding of lung immunity. The primary goal of this protocol is to provide details for establishing this alveolus-on-chip model as a robust in vitro platform for infection studies, enabling researchers to closely observe and analyze the complex interactions between pathogens and the host's immune system within the pulmonary environment. This is achieved through the application of microfluidic-based techniques to simulate key physiological conditions of the human alveoli, including blood flow and biomechanical stimulation of endothelial cells, alongside maintaining an air-liquid interface crucial for the realistic exposure of epithelial cells to air. The model system is compatible with a range of standardized assays, such as immunofluorescence staining, cytokine profiling, and colony-forming unit (CFU)/plaque analysis, allowing for comprehensive insights into immune dynamics during infection. The Alveolus-on-chip is composed of essential cell types, including human distal lung epithelial cells (H441) and human umbilical vein endothelial cells (HUVECs) separated by porous polyethylene terephthalate (PET) membranes, with primary monocyte-derived macrophages strategically positioned between the epithelial and endothelial layers. The tissue model enhances the ability to dissect and analyze the nuanced factors involved in pulmonary immune responses in vitro. As a valuable tool, it should contribute to the advancement of lung research, providing a more accurate and dynamic in vitro model for studying the pathogenesis of respiratory infections and testing potential therapeutic interventions.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/66602\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/66602","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种先进的片上免疫肺模型,旨在复制人类肺泡的结构和功能。这种创新模型采用微流体灌注生物芯片,支持模拟人类肺泡环境的气液界面。组织工程学用于整合关键的细胞成分,包括内皮细胞、巨噬细胞和上皮细胞,以创建具有代表性的肺泡组织模型。该模型有助于深入研究粘膜对病毒、细菌和真菌等各种病原体的免疫反应,从而加深我们对肺部免疫的了解。本方案的主要目的是提供建立这种芯片肺泡模型的细节,将其作为进行感染研究的强大体外平台,使研究人员能够密切观察和分析肺部环境中病原体与宿主免疫系统之间复杂的相互作用。这是通过应用基于微流体的技术来模拟人体肺泡的关键生理条件来实现的,包括血流和对内皮细胞的生物力学刺激,以及维持对上皮细胞真实暴露于空气中至关重要的气液界面。该模型系统兼容一系列标准化检测,如免疫荧光染色、细胞因子谱分析和菌落形成单位(CFU)/斑块分析,可全面了解感染期间的免疫动态。芯片肺泡由基本细胞类型组成,包括由多孔聚对苯二甲酸乙二醇酯(PET)膜分隔的人远端肺上皮细胞(H441)和人脐静脉内皮细胞(HUVEC),原代单核细胞衍生的巨噬细胞被战略性地放置在上皮和内皮层之间。该组织模型提高了剖析和分析体外肺部免疫反应所涉及的细微因素的能力。作为一种有价值的工具,它应有助于推动肺部研究,为研究呼吸道感染的发病机制和测试潜在的治疗干预措施提供一个更准确、更动态的体外模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Immunocompetent Alveolus-on-Chip Model for Studying Alveolar Mucosal Immune Responses.

We introduce an advanced immunocompetent lung-on-chip model designed to replicate the human alveolar structure and function. This innovative model employs a microfluidic-perfused biochip that supports an air-liquid interface mimicking the environment in the human alveoli. Tissue engineering is used to integrate key cellular components, including endothelial cells, macrophages, and epithelial cells, to create a representative tissue model of the alveolus. The model facilitates in-depth examinations of the mucosal immune responses to various pathogens, including viruses, bacteria, and fungi, thereby advancing our understanding of lung immunity. The primary goal of this protocol is to provide details for establishing this alveolus-on-chip model as a robust in vitro platform for infection studies, enabling researchers to closely observe and analyze the complex interactions between pathogens and the host's immune system within the pulmonary environment. This is achieved through the application of microfluidic-based techniques to simulate key physiological conditions of the human alveoli, including blood flow and biomechanical stimulation of endothelial cells, alongside maintaining an air-liquid interface crucial for the realistic exposure of epithelial cells to air. The model system is compatible with a range of standardized assays, such as immunofluorescence staining, cytokine profiling, and colony-forming unit (CFU)/plaque analysis, allowing for comprehensive insights into immune dynamics during infection. The Alveolus-on-chip is composed of essential cell types, including human distal lung epithelial cells (H441) and human umbilical vein endothelial cells (HUVECs) separated by porous polyethylene terephthalate (PET) membranes, with primary monocyte-derived macrophages strategically positioned between the epithelial and endothelial layers. The tissue model enhances the ability to dissect and analyze the nuanced factors involved in pulmonary immune responses in vitro. As a valuable tool, it should contribute to the advancement of lung research, providing a more accurate and dynamic in vitro model for studying the pathogenesis of respiratory infections and testing potential therapeutic interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
期刊最新文献
A Rapid Method to Confine and Safely Handle Bees in the Field. Characterizing Mediated Extracellular Electron Transfer in Lactic Acid Bacteria with a Three-Electrode, Two-Chamber Bioelectrochemical System. Consistent Delivery of Adeno-Associated Virus via Lateral Tail-Vein Injection in Adult Mice. Detection of DNA Breaks in Dividing Human Cells by Neutral Comet Assay. Effective Detection of Hoechst Side Population Cells by Flow Cytometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1