{"title":"叶面喷施腐植酸会影响水胁迫玉米的生长和营养状况吗?","authors":"Britta Pitann, Kamran Khan, Karl H Mühling","doi":"10.1002/pei3.10156","DOIUrl":null,"url":null,"abstract":"<p><p>Maize (<i>Zea mays</i> L.) is one of the world's most important crops, but its productivity is at high risk as climate change increases the risk of water stress. Therefore, the development of mitigation strategies to combat water stress in agriculture is fundamental to ensure food security. Humic acids are known to have a positive effect on drought tolerance, but data on their efficacy under waterlogging are lacking. This study aimed to elucidate the effect of a new humic acid product, a by-product of Ukrainian bentonite mining, on maize growth and nutrient status under waterlogging. Maize was grown for 9 weeks and three water stress treatments, which were applied for 14 days: waterlogging, alternating waterlogging and drought, and drought. On the day of stress application, the humic acid product (1% v/v) was applied to the leaves. Soil Plant Analysis Development (SPAD) values were recorded during the stress treatments. Plants were harvested after stressing ceased and fresh weight and P and Zn status were analyzed. Drought reduced shoot fresh weight, while it was unaffected under waterlogging. This is in contrast to SPAD readings, which showed a significant decrease over time under submergence, but not under drought. Under alternating stress, although SPAD values declined under waterlogging but stabilized when switched to drought, no growth reduction was apparent. Application of the humic acid product was ineffective in all cases. Although anthocyanin discoloration occurred under waterlogging stress, P deficiency, which is usually the main factor driving anthocyanin formation, was not the reason. Interestingly, Zn concentration decreased under waterlogging but not under the other stresses, which was alleviated by humic acid application. However, no effect of foliar-applied humic acids was observed under alternating and drought stress. It can be concluded that the tested humic acid product has the potential to improve the Zn status of maize under waterlogging.</p>","PeriodicalId":74457,"journal":{"name":"Plant-environment interactions (Hoboken, N.J.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176913/pdf/","citationCount":"0","resultStr":"{\"title\":\"Does humic acid foliar application affect growth and nutrient status of water-stressed maize?\",\"authors\":\"Britta Pitann, Kamran Khan, Karl H Mühling\",\"doi\":\"10.1002/pei3.10156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maize (<i>Zea mays</i> L.) is one of the world's most important crops, but its productivity is at high risk as climate change increases the risk of water stress. Therefore, the development of mitigation strategies to combat water stress in agriculture is fundamental to ensure food security. Humic acids are known to have a positive effect on drought tolerance, but data on their efficacy under waterlogging are lacking. This study aimed to elucidate the effect of a new humic acid product, a by-product of Ukrainian bentonite mining, on maize growth and nutrient status under waterlogging. Maize was grown for 9 weeks and three water stress treatments, which were applied for 14 days: waterlogging, alternating waterlogging and drought, and drought. On the day of stress application, the humic acid product (1% v/v) was applied to the leaves. Soil Plant Analysis Development (SPAD) values were recorded during the stress treatments. Plants were harvested after stressing ceased and fresh weight and P and Zn status were analyzed. Drought reduced shoot fresh weight, while it was unaffected under waterlogging. This is in contrast to SPAD readings, which showed a significant decrease over time under submergence, but not under drought. Under alternating stress, although SPAD values declined under waterlogging but stabilized when switched to drought, no growth reduction was apparent. Application of the humic acid product was ineffective in all cases. Although anthocyanin discoloration occurred under waterlogging stress, P deficiency, which is usually the main factor driving anthocyanin formation, was not the reason. Interestingly, Zn concentration decreased under waterlogging but not under the other stresses, which was alleviated by humic acid application. However, no effect of foliar-applied humic acids was observed under alternating and drought stress. It can be concluded that the tested humic acid product has the potential to improve the Zn status of maize under waterlogging.</p>\",\"PeriodicalId\":74457,\"journal\":{\"name\":\"Plant-environment interactions (Hoboken, N.J.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176913/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant-environment interactions (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pei3.10156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant-environment interactions (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pei3.10156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Does humic acid foliar application affect growth and nutrient status of water-stressed maize?
Maize (Zea mays L.) is one of the world's most important crops, but its productivity is at high risk as climate change increases the risk of water stress. Therefore, the development of mitigation strategies to combat water stress in agriculture is fundamental to ensure food security. Humic acids are known to have a positive effect on drought tolerance, but data on their efficacy under waterlogging are lacking. This study aimed to elucidate the effect of a new humic acid product, a by-product of Ukrainian bentonite mining, on maize growth and nutrient status under waterlogging. Maize was grown for 9 weeks and three water stress treatments, which were applied for 14 days: waterlogging, alternating waterlogging and drought, and drought. On the day of stress application, the humic acid product (1% v/v) was applied to the leaves. Soil Plant Analysis Development (SPAD) values were recorded during the stress treatments. Plants were harvested after stressing ceased and fresh weight and P and Zn status were analyzed. Drought reduced shoot fresh weight, while it was unaffected under waterlogging. This is in contrast to SPAD readings, which showed a significant decrease over time under submergence, but not under drought. Under alternating stress, although SPAD values declined under waterlogging but stabilized when switched to drought, no growth reduction was apparent. Application of the humic acid product was ineffective in all cases. Although anthocyanin discoloration occurred under waterlogging stress, P deficiency, which is usually the main factor driving anthocyanin formation, was not the reason. Interestingly, Zn concentration decreased under waterlogging but not under the other stresses, which was alleviated by humic acid application. However, no effect of foliar-applied humic acids was observed under alternating and drought stress. It can be concluded that the tested humic acid product has the potential to improve the Zn status of maize under waterlogging.