利用电子健康记录预测阿尔茨海默病和相关痴呆症的发病:卡奇县老年记忆研究(1995-2008 年)》。

Karen C Schliep, Jeffrey Thornhill, JoAnn Tschanz, Julio C Facelli, Truls Østbye, Michelle K Sorweid, Ken R Smith, Michael Varner, Richard D Boyce, Christine J Cliatt Brown, Huong Meeks, Samir Abdelrahman
{"title":"利用电子健康记录预测阿尔茨海默病和相关痴呆症的发病:卡奇县老年记忆研究(1995-2008 年)》。","authors":"Karen C Schliep, Jeffrey Thornhill, JoAnn Tschanz, Julio C Facelli, Truls Østbye, Michelle K Sorweid, Ken R Smith, Michael Varner, Richard D Boyce, Christine J Cliatt Brown, Huong Meeks, Samir Abdelrahman","doi":"10.21203/rs.3.rs-4414498/v1","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Clinical notes, biomarkers, and neuroimaging have been proven valuable in dementia prediction models. Whether commonly available structured clinical data can predict dementia is an emerging area of research. We aimed to predict Alzheimer's disease (AD) and Alzheimer's disease related dementias (ADRD) in a well-phenotyped, population-based cohort using a machine learning approach.</p><p><strong>Methods: </strong>Administrative healthcare data (k=163 diagnostic features), in addition to Census/vital record sociodemographic data (k = 6 features), were linked to the Cache County Study (CCS, 1995-2008).</p><p><strong>Results: </strong>Among successfully linked UPDB-CCS participants (n=4206), 522 (12.4%) had incident AD/ADRD as per the CCS \"gold standard\" assessments. Random Forest models, with a 1-year prediction window, achieved the best performance with an Area Under the Curve (AUC) of 0.67. Accuracy declined for dementia subtypes: AD/ADRD (AUC = 0.65); ADRD (AUC = 0.49).</p><p><strong>Discussion: </strong>Commonly available structured clinical data (without labs, notes, or prescription information) demonstrate modest ability to predict AD/ADRD, corroborated by prior research.</p>","PeriodicalId":94282,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177999/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting the onset of Alzheimer's disease and related dementia using Electronic Health Records: Findings from the Cache County Study on Memory in Aging (1995-2008).\",\"authors\":\"Karen C Schliep, Jeffrey Thornhill, JoAnn Tschanz, Julio C Facelli, Truls Østbye, Michelle K Sorweid, Ken R Smith, Michael Varner, Richard D Boyce, Christine J Cliatt Brown, Huong Meeks, Samir Abdelrahman\",\"doi\":\"10.21203/rs.3.rs-4414498/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Clinical notes, biomarkers, and neuroimaging have been proven valuable in dementia prediction models. Whether commonly available structured clinical data can predict dementia is an emerging area of research. We aimed to predict Alzheimer's disease (AD) and Alzheimer's disease related dementias (ADRD) in a well-phenotyped, population-based cohort using a machine learning approach.</p><p><strong>Methods: </strong>Administrative healthcare data (k=163 diagnostic features), in addition to Census/vital record sociodemographic data (k = 6 features), were linked to the Cache County Study (CCS, 1995-2008).</p><p><strong>Results: </strong>Among successfully linked UPDB-CCS participants (n=4206), 522 (12.4%) had incident AD/ADRD as per the CCS \\\"gold standard\\\" assessments. Random Forest models, with a 1-year prediction window, achieved the best performance with an Area Under the Curve (AUC) of 0.67. Accuracy declined for dementia subtypes: AD/ADRD (AUC = 0.65); ADRD (AUC = 0.49).</p><p><strong>Discussion: </strong>Commonly available structured clinical data (without labs, notes, or prescription information) demonstrate modest ability to predict AD/ADRD, corroborated by prior research.</p>\",\"PeriodicalId\":94282,\"journal\":{\"name\":\"Research square\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177999/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research square\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-4414498/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-4414498/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

简介:临床笔记、生物标志物和神经影像学已被证明对痴呆症预测模型很有价值:临床笔记、生物标志物和神经影像学已被证明在痴呆症预测模型中很有价值。常见的结构化临床数据能否预测痴呆症是一个新兴的研究领域。我们的目标是利用机器学习方法在一个表型清晰的人群队列中预测阿尔茨海默病(AD)和阿尔茨海默病相关痴呆症(ADRD)。方法 将行政医疗保健数据(k = 163 个诊断特征)与人口普查/生命记录社会人口学数据(k = 6 个特征)以及卡奇县研究(CCS,1995-2008 年)连接起来。结果 在成功链接的UPDB-CCS参与者(n = 4206)中,有522人(12.4%)根据CCS "黄金标准 "评估结果患有AD/ADRD。随机森林模型的预测窗口期为1年,性能最佳,曲线下面积(AUC)为0.67。痴呆症亚型的准确性有所下降:AD/ADDR (AUC = 0.65); ADDR (AUC = 0.49)。讨论 常见的结构化临床数据(不含化验、笔记或处方信息)显示出预测 AD/ADRD 的适度能力,这也得到了先前研究的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the onset of Alzheimer's disease and related dementia using Electronic Health Records: Findings from the Cache County Study on Memory in Aging (1995-2008).

Introduction: Clinical notes, biomarkers, and neuroimaging have been proven valuable in dementia prediction models. Whether commonly available structured clinical data can predict dementia is an emerging area of research. We aimed to predict Alzheimer's disease (AD) and Alzheimer's disease related dementias (ADRD) in a well-phenotyped, population-based cohort using a machine learning approach.

Methods: Administrative healthcare data (k=163 diagnostic features), in addition to Census/vital record sociodemographic data (k = 6 features), were linked to the Cache County Study (CCS, 1995-2008).

Results: Among successfully linked UPDB-CCS participants (n=4206), 522 (12.4%) had incident AD/ADRD as per the CCS "gold standard" assessments. Random Forest models, with a 1-year prediction window, achieved the best performance with an Area Under the Curve (AUC) of 0.67. Accuracy declined for dementia subtypes: AD/ADRD (AUC = 0.65); ADRD (AUC = 0.49).

Discussion: Commonly available structured clinical data (without labs, notes, or prescription information) demonstrate modest ability to predict AD/ADRD, corroborated by prior research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Long non-coding RNA Malat1 fine-tunes bone homeostasis and repair by orchestrating cellular crosstalk and the β-catenin-OPG/Jagged1 pathway. Dietary lipid is largely deposited in skin and rapidly affects insulating properties. Novel Machine Learning of DNA Methylation Patterns to Diagnose Complex Disease: Identification of Cerebral Palsy with Concurrent Epilepsy. The context-dependent epigenetic and organogenesis programs determine 3D vs. 2D cellular fitness of MYC-driven murine liver cancer cells. GZMK+CD8+ T cells Target A Specific Acinar Cell Type in Sjögren's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1